Applicability of Several Soft Computing Approaches in Modeling Oxygen Transfer Efficiency at Baffled Chutes

AbstractThe present study investigates the accuracy of five different data-driven techniques in estimating oxygen transfer efficiency in baffled chutes: feedforward neural network (FFNN), radial ba...

[1]  Fikret Kocabaş,et al.  An artificial neural network model for the prediction of critical submergence for intake in a stratified fluid medium , 2009 .

[2]  Pavel Novák,et al.  Oxygen Transfer at Hydraulic Structures , 1978 .

[3]  Hubert Chanson,et al.  Experimental Investigations of Air Entrainment in Transition and Skimming Flows down a Stepped Chute: Application to Embankment Overflow Stepped Spillways , 2002 .

[4]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[5]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[6]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[7]  Tarek Sayed,et al.  Comparison of Adaptive Network Based Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models , 2003 .

[8]  Helmut Kobus,et al.  Unified Presentation of Weir-Aeration Data , 1978 .

[9]  John S. Gulliver,et al.  PREDICTIVE CAPABILITIES IN OXYGEN TRANSFER AT HYDRAULIC STRUCTURES , 1998 .

[10]  Ozgur Kisi,et al.  Bridge afflux analysis through arched bridge constrictions using artificial intelligence methods , 2009 .

[11]  Ahmet Baylar,et al.  Study of aeration efficiency at stepped channels , 2003 .

[12]  Sanjib Moulick,et al.  Design characteristics of pooled circular stepped cascade aeration system , 2013 .

[13]  Fi-John Chang,et al.  Modelling combined open channel flow by artificial neural networks , 2005 .

[14]  Ozgur Kisi,et al.  Initial assessment of bridge backwater using an artificial neural network approach , 2008 .

[15]  Özgür Kisi,et al.  Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel , 2011, Expert Syst. Appl..

[16]  Ozgur Kisi,et al.  Daily pan evaporation modelling using a neuro-fuzzy computing technique , 2006 .

[17]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[18]  Ahmet Baylar,et al.  An experimental investigation of aeration performance in stepped spillways , 2006 .

[19]  Olivier Potier,et al.  Aeration efficiency over stepped cascades: better predictions from flow regimes. , 2014, Water research.

[20]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[21]  Özgür Kişi,et al.  Determination of Mean Velocity and Discharge in Natural Streams Using Neuro-Fuzzy and Neural Network Approaches , 2014, Water Resources Management.

[22]  Robert M. Sorensen Stepped Spillway Hydraulic Model Investigation , 1985 .

[23]  John S. Gulliver,et al.  Indexing Gas Transfer in Self-Aerated Flows , 1990 .

[24]  Mohammad Ali Ghorbani,et al.  Modelling Energy Dissipation Over Stepped-gabion Weirs by Artificial Intelligence , 2014, Water Resources Management.

[25]  Hubert Chanson,et al.  HYDRAULICS, AIR ENTRAINMENT AND ENERGY DISSIPATION ON A , 2014 .

[26]  O. Kisi,et al.  Performance Evaluation of ANN and ANFIS Models for Estimating Garlic Crop Evapotranspiration , 2011 .

[27]  J. Yazdi,et al.  An algorithm for calculating air demand in gated tunnels using a 3D numerical model , 2011 .

[28]  Mustafa M. Aral,et al.  Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm , 2007 .

[29]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[30]  Hubert Chanson,et al.  Air-Water Mass Transfer on a Stepped Waterway , 2005 .

[31]  J. Gulliver,et al.  Modeling Total Dissolved Gas Concentration Downstream of Spillways , 2008 .

[32]  Nihat Kaya,et al.  Length prediction of non-aerated region flow at baffled chutes using intelligent nonlinear regression methods , 2016, Environmental Earth Sciences.

[33]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[34]  Charles S Melching,et al.  Allocation of supplementary aeration stations in the Chicago waterway system for dissolved oxygen improvement. , 2011, Journal of environmental management.

[35]  Kejian Chu,et al.  Aeration at overflow dams with curved surfaces by different flashboard spillways , 2014 .

[36]  Özgür Kisi,et al.  Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel , 2010, Adv. Eng. Softw..

[37]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[38]  S. Mahapatra,et al.  A neural network approach for prediction of discharge in straight compound open channel flow , 2011 .

[39]  Hubert Chanson,et al.  Air-water flow and gas transfer at aeration cascades: A comparative study of smooth and stepped chutes , 2000 .

[40]  Hideo Nakasone,et al.  Study of aeration at weirs and cascades , 1987 .

[41]  Christian W. Dawson,et al.  An artificial neural network approach to rainfall-runoff modelling , 1998 .

[42]  Hubert Chanson,et al.  Stepped Spillway Flows and Air Entrainment , 1993 .

[43]  Hubert Chanson,et al.  Energy Dissipation and Air Entrainment in Stepped Storm Waterway: Experimental Study , 2002 .

[44]  Soon Heung Chang,et al.  Radial basis function networks applied to DNBR calculation in digital core protection systems , 2003 .

[45]  Nihat Kaya,et al.  Study of oxygen transfer efficiency at baffled chutes , 2010 .

[46]  D A Ervine,et al.  AIR ENTRAINMENT IN HYDRAULIC STRUCTURES: A REVIEW. , 1998 .