On the ZK equation with a directional dissipation

Abstract This paper studies the generalized Zakharov–Kuznetsov–Burgers equation. The initial value problem associated to this equation will be investigated in the nonhomogeneous Sobolev spaces and some suitable weighted spaces, under appropriate conditions. Moreover, an ill-posedness result (in some sense) will be proved in the anisotropic Sobolev spaces. Furthermore some exact traveling wave solutions of this equation will be obtained.

[1]  Takuji Kawahara,et al.  Approximate Equations for Long Nonlinear Waves on a Viscous Fluid , 1978 .

[2]  Toh,et al.  Two-dimensionally localized pulses of a nonlinear equation with dissipation and dispersion. , 1989, Physical review. A, General physics.

[3]  M. Wadati,et al.  Nonlinear dust acoustic waves in a nonuniform magnetized complex plasma with nonthermal ions and dust charge variation , 2007 .

[4]  A. D. Bouard,et al.  Stability and instability of some nonlinear dispersive solitary waves in higher dimension , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[6]  Nils Svanstedt,et al.  On the Ill‐Posedness of the IVP for the Generalized Korteweg‐De Vries and Nonlinear Schrödinger Equations , 1996 .

[7]  J. Saut,et al.  The Cauchy Problem for the Euler–Poisson System and Derivation of the Zakharov–Kuznetsov Equation , 2012, 1205.5080.

[8]  Jean-Claude Saut,et al.  The Cauchy problem for the 3D Zakharov-Kuznetsov equation , 2009 .

[9]  Bassam Kojok Sharp well-posedness for Kadomtsev–Petviashvili–Burgers (KPBII) equation in R2 , 2006 .

[10]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[11]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[12]  J. Bona,et al.  The initial-value problem for the Korteweg-de Vries equation , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  R. Iório KDV, BO and friends in weighted Sobolev spaces , 1990 .

[14]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[15]  V. Petviashvili Multidimensional and dissipative solitons , 1981 .

[16]  A. Esfahani On the Benney equation , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Luc Molinet,et al.  The Global Cauchy Problem in Bourgain's-Type Spaces for a Dispersive Dissipative Semilinear Equation , 2002, SIAM J. Math. Anal..

[18]  Francis Ribaud,et al.  The cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order , 2001 .

[19]  S. Maslowe,et al.  Two-dimensional amplitude evolution equations for nonlinear dispersive waves on thin films , 1989 .

[20]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[21]  D. J. Benney Long Waves on Liquid Films , 1966 .

[22]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[23]  Wang Kelin,et al.  Exact solutions for some coupled nonlinear equations. II , 1990 .

[24]  R. Sabry,et al.  Zakharov–Kuznetsov–Burgers equation for dust ion acoustic waves , 2008 .

[25]  Felipe Linares,et al.  Well-Posedness for the Two-Dimensional Modified Zakharov-Kuznetsov Equation , 2009, SIAM J. Math. Anal..