Modulated Unit-Norm Tight Frames for Compressed Sensing

In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements m=O(slog2slog2n) for s-sparse signals of length n and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. More importantly, we propose several structured sensing models by appealing to this unified framework, such as a general sensing model with arbitrary/determinisic subsamplers, a fast and efficient block compressed sensing scheme, and structured sensing matrices with deterministic phase modulations, all of which can lead to improvements on practical applications. In particular, one of the constructions is applied to simplify the transceiver design of CS-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems.

[1]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[2]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[3]  Zhu Han,et al.  Compressive Sensing Based High-Resolution Channel Estimation for OFDM System , 2012, IEEE Journal of Selected Topics in Signal Processing.

[4]  M. Talagrand The Generic Chaining , 2005 .

[5]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[6]  Jean-Philippe Thiran,et al.  Spread spectrum for compressed sensing techniques in magnetic resonance imaging , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[8]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[9]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[10]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[11]  Jianwei Ma,et al.  Single-Pixel Remote Sensing , 2009, IEEE Geoscience and Remote Sensing Letters.

[12]  Aggelos K. Katsaggelos,et al.  Construction of Incoherent Unit Norm Tight Frames With Application to Compressed Sensing , 2014, IEEE Transactions on Information Theory.

[13]  Jean-Philippe Thiran,et al.  Sparsity Averaging for Compressive Imaging , 2012, IEEE Signal Processing Letters.

[14]  Cong Ling,et al.  Convolutional Compressed Sensing Using Deterministic Sequences , 2012, IEEE Transactions on Signal Processing.

[15]  Justin Romberg,et al.  Multiple channel estimation using spectrally random probes , 2009, Optical Engineering + Applications.

[16]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[17]  Michael B. Wakin,et al.  The Restricted Isometry Property for Random Block Diagonal Matrices , 2012, ArXiv.

[18]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[19]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[20]  J. Romberg,et al.  Sparse channel separation using random probes , 2010, 1002.4222.

[21]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[22]  Babak Hassibi,et al.  On multicarrier signals where the PMEPR of a random codeword is asymptotically logn , 2004, IEEE Transactions on Information Theory.

[23]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[24]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.

[25]  Dustin G. Mixon,et al.  The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.

[26]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[27]  Jean-Philippe Thiran,et al.  Spread Spectrum Magnetic Resonance Imaging , 2012, IEEE Transactions on Medical Imaging.

[28]  Pierre Vandergheynst,et al.  Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques , 2011, EURASIP J. Adv. Signal Process..

[29]  Cong Ling,et al.  Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing , 2012, 2012 IEEE Information Theory Workshop.

[30]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[31]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[32]  Miguel R. D. Rodrigues,et al.  Projection Design for Statistical Compressive Sensing: A Tight Frame Based Approach , 2013, IEEE Transactions on Signal Processing.

[33]  Juhwan Yoo,et al.  A 100MHz–2GHz 12.5x sub-Nyquist rate receiver in 90nm CMOS , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[34]  Richard G. Baraniuk,et al.  The compressive multiplexer for multi-channel compressive sensing , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[36]  Shengli Zhou,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009, OCEANS 2009-EUROPE.

[37]  Lin Liu,et al.  Golay sequence for parital Fourier and Hadamard compressive imaging , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[39]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[40]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[41]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[42]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[43]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[44]  Justin K. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.

[45]  T. Blumensath,et al.  Theory and Applications , 2011 .

[46]  Sinem Coleri Ergen,et al.  Channel estimation techniques based on pilot arrangement in OFDM systems , 2002, IEEE Trans. Broadcast..

[47]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.