Template Matching and Change Point Detection by M-Estimation

We consider the fundamental problem of matching a template to a signal. We do so by M-estimation, which encompasses procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite samples in the minimax sense and in the large-sample limit in terms of local minimaxity and relative efficiency. Although most of the paper is dedicated to the study of the basic shift model in the context of a random design, we consider many extensions towards the end of the paper, including more flexible templates, fixed designs, the agnostic setting, and more.

[1]  George Michailidis,et al.  Change point estimation under adaptive sampling , 2009, 0908.1838.

[2]  L. Moisan,et al.  Maximal meaningful events and applications to image analysis , 2003 .

[3]  Cristian Preda,et al.  Estimation for the Distribution of Two-dimensional Discrete Scan Statistics , 2006 .

[4]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[5]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  T. Jiang Maxima of partial sums indexed by geometrical structures , 1999 .

[7]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[8]  A. Korostelev On Minimax Estimation of a Discontinuous Signal , 1988 .

[9]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[10]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[11]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[12]  David V. Hinkley,et al.  Inference about the change-point in a sequence of binomial variables , 1970 .

[13]  Ankur Moitra,et al.  Message‐Passing Algorithms for Synchronization Problems over Compact Groups , 2016, ArXiv.

[14]  Meng Wang,et al.  Distribution-Free Detection of Structured Anomalies: Permutation and Rank-Based Scans , 2015, 1508.03002.

[15]  E. Arias-Castro,et al.  Exact Asymptotics for the Scan Statistic and Fast Alternatives , 2014, 1409.7127.

[16]  Fabrice Gamboa,et al.  Semi-parametric estimation of shifts , 2007, 0712.1936.

[17]  Multidimensional multiscale scanning in Exponential Families: Limit theory and statistical consequences , 2018, 1802.07995.

[18]  N. Vayatis,et al.  Selective review of offline change point detection methods , 2019 .

[19]  S. Panchapakesan,et al.  Inference about the Change-Point in a Sequence of Random Variables: A Selection Approach , 1988 .

[20]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[21]  Zakhar Kabluchko,et al.  Extremes of the standardized Gaussian noise , 2010, 1007.0312.

[22]  J. Steele,et al.  A martingale approach to scan statistics , 2005 .

[23]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[24]  Olivier Collier,et al.  Minimax hypothesis testing for curve registration , 2011, AISTATS 2012.

[25]  Joseph Glaz,et al.  Multiple Window Discrete Scan Statistics , 2004 .

[26]  Xiaoming Huo,et al.  Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.

[27]  E. Candès,et al.  Detection of an anomalous cluster in a network , 2010, 1001.3209.

[28]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[29]  M. Koutras,et al.  On the asymptotic distribution of the discrete scan statistic , 2006, Journal of Applied Probability.

[30]  B. Brodsky,et al.  Nonparametric Methods in Change Point Problems , 1993 .

[31]  E. Seijo,et al.  Change-point in stochastic design regression and the bootstrap , 2011, 1101.1032.

[32]  D. Ferger Change-point estimators in case of small disorders , 1994 .

[33]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[34]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[35]  L. Dümbgen The Asymptotic Behavior of Some Nonparametric Change-Point Estimators , 1991 .

[36]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[37]  Q. Shao,et al.  On a conjecture of Revesz , 1995 .

[38]  A. Munk,et al.  Multiscale change point inference , 2013, 1301.7212.

[39]  Yi-Ching Yao,et al.  LEAST-SQUARES ESTIMATION OF A STEP FUNCTION , 2016 .

[40]  G. Walther Optimal and fast detection of spatial clusters with scan statistics , 2010, 1002.4770.

[41]  Joseph Naus,et al.  Multiple Window and Cluster Size Scan Procedures , 2004 .

[42]  J. Naus,et al.  Scan Statistics , 2014, Encyclopedia of Social Network Analysis and Mining.

[43]  Dietmar Ferger,et al.  Exponential and polynomial tailbounds for change-point estimators , 2001 .

[44]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.

[45]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[46]  Arnak S. Dalalyan,et al.  Curve registration by nonparametric goodness-of-fit testing , 2011, 1104.4210.

[47]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Narayanaswamy Balakrishnan,et al.  Scan Statistics and Applications , 2012 .

[49]  T. Gasser,et al.  Convergence and consistency results for self-modeling nonlinear regression , 1988 .

[50]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[51]  J. Engel,et al.  Model Estimation in Nonlinear-regression Under Shape Invariance , 1995 .

[52]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[53]  Myriam Vimond,et al.  Efficient estimation for a subclass of shape invariant models , 2010, 1010.0796.

[54]  J. Bai,et al.  Estimation of a Change Point in Multiple Regression Models , 1997, Review of Economics and Statistics.

[55]  Y. Ritov,et al.  Semiparametric curve alignment and shift density estimation with application to neuronal data , 2009 .

[56]  Maik Döring Convergence in distribution of multiple change point estimators , 2011 .

[57]  T. Gasser,et al.  Synchronizing sample curves nonparametrically , 1999 .

[58]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[59]  A. Munk,et al.  Multiscale scanning in inverse problems , 2016, The Annals of Statistics.

[60]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[61]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[62]  Hongzhe Li,et al.  Optimal Sparse Segment Identification With Application in Copy Number Variation Analysis , 2010, Journal of the American Statistical Association.

[63]  Joseph Glaz,et al.  Variable Window Scan Statistics for Normal Data , 2014 .

[64]  Yaacov Ritov,et al.  Semiparametric Curve Alignment and Shift Density Estimation for Biological Data , 2008, IEEE Transactions on Signal Processing.

[65]  Jiyao Kou,et al.  Identifying the support of rectangular signals in Gaussian noise , 2017, Communications in Statistics - Theory and Methods.

[66]  Vladimir Pozdnyakov,et al.  Scan Statistics: Methods and Applications , 2009 .

[67]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[68]  Fabrice Gamboa,et al.  Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fourier--Mellin Transform , 2009, SIAM J. Imaging Sci..

[69]  James Stephen Marron,et al.  Semiparametric Comparison of Regression Curves , 1990 .

[70]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[71]  E. A. Sylvestre,et al.  Self Modeling Nonlinear Regression , 1972 .

[72]  Amit Singer,et al.  Exact and Stable Recovery of Rotations for Robust Synchronization , 2012, ArXiv.

[73]  René Mauer Least Squares Estimation in Multiple Change-Point Models , 2018 .

[74]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[75]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[76]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[77]  Dietmar Ferger,et al.  A continuous mapping theorem for the argmax‐functional in the non‐unique case , 2004 .

[78]  T. Severini,et al.  Asymptotic properties of maximum likelihood estimators in models with multiple change points , 2011, 1102.5224.