Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging.

Neuroradiologists may encounter, on a daily basis, a challenging diversity of neurologic disorders, including stroke, trauma, epilepsy, and even neurodegenerative conditions, such as Huntington disease, AIDS dementia complex, and amyotrophic lateral sclerosis [(1)][1], but this spectrum of disease

[1]  P. Molinoff,et al.  Basic Neurochemistry: Molecular, Cellular and Medical Aspects , 1989 .

[2]  S. Lipton Neuronal protection and destruction by NO , 1999, Cell Death and Differentiation.

[3]  W. Tatton,et al.  Mitochondria in neurodegenerative apoptosis: An opportunity for therapy? , 1998, Annals of neurology.

[4]  T. Arendt,et al.  Nitric oxide and Alzheimer's disease. , 1998, Journal fur Hirnforschung.

[5]  A. Guidotti,et al.  Induction of Ornithine Decarboxylase by N‐Methyl‐D‐Aspartate Receptor Activation Is Unrelated to Potentiation of Glutamate Excitotoxicity by Polyamines in Cerebellar Granule Neurons , 1993, Journal of neurochemistry.

[6]  B. Siesjö,et al.  Calcium in ischemic cell death. , 1998, Stroke.

[7]  D. Brooks,et al.  Evidence for glutamate excitotoxicity in Huntington's disease with proton magnetic resonance spectroscopy , 1994, The Lancet.

[8]  A. Hamberger,et al.  Amino acids in the neuronal microenvironment of focal human epileptic lesions , 1991, Epilepsy Research.

[9]  V. Pinelis,et al.  The mitochondrial permeability transition: the brain's point of view. , 1999, Biochemical Society Symposium.

[10]  A. Marini,et al.  Toward the Development of Strategies to Prevent Ischemic Neuronal Injury , 1997, Annals of the New York Academy of Sciences.

[11]  S. Lipton,et al.  Calcium, free radicals and excitotoxins in neuronal apoptosis. , 1998, Cell calcium.

[12]  A. Kaske,et al.  The controversy about spinal neuronal nitric oxide synthase: under which conditions is it up- or downregulated? , 1999, Cell and Tissue Research.

[13]  A. Baker,et al.  Clinical significance of CSF glutamate concentrations following severe traumatic brain injury in humans. , 1998, Journal of neurotrauma.

[14]  W. Paschen Glutamate excitotoxicity in transient global cerebral ischemia. , 1996, Acta neurobiologiae experimentalis.

[15]  S. Budd,et al.  Mitochondria, Calcium Regulation, and Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1996, Journal of neurochemistry.

[16]  G. Nappi,et al.  The effects on the central nervous system of nitroglycerin—putative mechanisms and mediators , 1999, Progress in Neurobiology.

[17]  T Sutula,et al.  Synaptic and axonal remodeling of mossy fibers in the hilus and supragranular region of the dentate gyrus in kainate‐treated rats , 1998, The Journal of comparative neurology.

[18]  T. Sutula 10. Reactive changes in epilepsy: cell death and axon sprouting induced by kindling , 1991, Epilepsy Research.

[19]  P. Bickler,et al.  Anesthetics and Mild Hypothermia Similarly Prevent Hippocampal Neuron Death in an In Vitro Model of Cerebral Ischemia , 2000, Anesthesiology.

[20]  D. Choi Antagonizing excitotoxicity: a therapeutic strategy for stroke? , 1998, The Mount Sinai journal of medicine, New York.

[21]  P. Carlen,et al.  In Vitro Ischemia Promotes Glutamate-Mediated Free Radical Generation and Intracellular Calcium Accumulation in Hippocampal Pyramidal Neurons , 1997, Journal of Neuroscience.

[22]  S. Lipton,et al.  Update on current models of HIV-related neuronal injury: platelet-activating factor, arachidonic acid and nitric oxide. , 1994, Advances in neuroimmunology.

[23]  P. Mcgeer,et al.  Kainic acid as a tool in neurobiology , 1978 .

[24]  L. Rubin Chapter 1 Neuronal cell death: An updated view , 1998 .

[25]  M. Ward,et al.  Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts , 2000, Trends in Neurosciences.

[26]  J. Dubinsky Examination of the Role of Calcium in Neuronal Death , 1993, Annals of the New York Academy of Sciences.

[27]  C. Klee,et al.  Calcineurin: from structure to function. , 2000, Current topics in cellular regulation.

[28]  J. Olney Role of excitotoxins in developmental neuropathology. , 1993, APMIS. Supplementum.

[29]  D. Choi,et al.  Glutamate neurotoxicity in cortical cell culture is calcium dependent , 1985, Neuroscience Letters.

[30]  S. Lipton,et al.  Shakespeare in love—with NMDA receptors? , 1999, Nature Medicine.

[31]  D. Rosenbaum,et al.  Apoptosis in neurological disease. , 1998, Neurosurgery.

[32]  W. Baumgartner,et al.  The monosialoganglioside, GM1, reduces neurologic injury associated with hypothermic circulatory arrest. , 1993, Surgery.

[33]  S. Lipton,et al.  Neuroprotective versus neurodestructive effects of NO‐related species , 1998, BioFactors.

[34]  M. Montal,et al.  Mitochondria, glutamate neurotoxicity and the death cascade. , 1998, Biochimica et biophysica acta.

[35]  R. Gagliardi Neuroprotection, excitotoxicity and NMDA antagonists. , 2000, Arquivos de neuro-psiquiatria.

[36]  J. Dubinsky,et al.  Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  P. Nicotera,et al.  Apoptosis versus necrosis: the shape of neuronal cell death. , 1998, Results and problems in cell differentiation.

[38]  S. Budd,et al.  Mitochondria in the life and death of neurons. , 1998, Essays in biochemistry.

[39]  V Adám-Vizi [Neuroprotective effect of sodium channel blockers in ischemia: the pathomechanism of early ischemic dysfunction]. , 2000, Orvosi hetilap.

[40]  V. Jäntti,et al.  Lamotrigine improves cerebral outcome after hypothermic circulatory arrest: a study in a chronic porcine model. , 2000, The Journal of thoracic and cardiovascular surgery.

[41]  P. Sastry,et al.  Apoptosis and the Nervous System , 2000, Journal of neurochemistry.

[42]  W. Baumgartner,et al.  Glutamate excitotoxicity: a mechanism of neurologic injury associated with hypothermic circulatory arrest. , 1994, The Journal of thoracic and cardiovascular surgery.

[43]  R. Sapolsky,et al.  Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? , 1999, Trends in Neurosciences.

[44]  G. Haddad,et al.  Mechanisms underlying hypoxia-induced neuronal apoptosis , 2000, Progress in Neurobiology.

[45]  M. Chao,et al.  Neurotrophins: the biological paradox of survival factors eliciting apoptosis , 1998, Cell Death and Differentiation.

[46]  S. Takashima,et al.  Dopamine transporter and nitric oxide synthase in hypoxic-ischemic brain. , 2000, Pediatric neurology.

[47]  J. McNamara Kindling: An animal model of complex partial epilepsy , 1984, Annals of neurology.

[48]  T. Dawson,et al.  Nitric oxide in health and disease of the nervous system , 1997, Molecular Psychiatry.

[49]  J. McNamara Identification of Genetic Defect of an Epilepsy: Strategies for Therapeutic Advances , 1994, Epilepsia.

[50]  J. McNamara Role of neurotransmitters in seizure mechanisms in the kindling model of epilepsy. , 1984, Federation proceedings.

[51]  Junying Yuan,et al.  ICE, neuronal apoptosis and neurodegeneration , 1998, Cell Death and Differentiation.

[52]  末廣栄一 Brain Temperature Modifies Glutamate Neurotoxicity In Vivo(グルタミン酸神経毒性に及ぼす脳温変化の影響) , 1999 .

[53]  P. V. Rayudu,et al.  Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation , 1998, Neuroscience.

[54]  S. Lipton,et al.  Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV- associated neurological disease , 1995, The Journal of experimental medicine.

[55]  J M Land,et al.  Nitric oxide, mitochondria and neurological disease. , 1999, Biochimica et biophysica acta.

[56]  S. Lipton,et al.  Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Guérin,et al.  Neurodegenerative disorders: the role of peroxynitrite , 1999, Brain Research Reviews.

[58]  J. McNamara Emerging insights into the genesis of epilepsy , 1999, Nature.

[59]  S. Lipton,et al.  NMDA receptors: from genes to channels. , 1996, Trends in pharmacological sciences.

[60]  J. McNamara Excitatory amino acid receptors and epilepsy. , 1993, Current opinion in neurology and neurosurgery.

[61]  J. Vallat,et al.  [Role of glutamate and excitotoxicity in neurologic diseases]. , 1996, Revue neurologique.

[62]  J. Gotman,et al.  Excitatory amino acids are elevated in human epileptic cerebral cortex , 1988, Neurology.

[63]  T. Peng,et al.  Mitochondrial dysfunction in Parkinson's disease. , 1999, Biochemical Society symposium.

[64]  D. Green Apoptotic Pathways The Roads to Ruin , 1998, Cell.

[65]  Zhen Qin A Review of Therapeutic Potentials in Ischemic Stroke , 1998, European Neurology.

[66]  P. Nicotera,et al.  Apoptosis, excitotoxicity, and neuropathology. , 1998, Experimental cell research.

[67]  S. Lipton,et al.  Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. , 1999, European journal of pharmacology.

[68]  S. Budd,et al.  Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. , 1998, Pharmacology & therapeutics.

[69]  Richard J. Miller,et al.  Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons , 1990, Neuron.

[70]  B. Kristal,et al.  Mitochondrial Permeability Transition in the Central Nervous System: Induction by Calcium Cycling‐Dependent and ‐Independent Pathways , 1997, Journal of neurochemistry.

[71]  J. Coyle,et al.  Oxidative stress, glutamate, and neurodegenerative disorders. , 1993, Science.

[72]  D. Pitt,et al.  Glutamate excitotoxicity in a model of multiple sclerosis , 2000, Nature Medicine.

[73]  M. Greenberg,et al.  N-methyl-d-aspartate receptors are critical for mediating the effects of glutamate on intracellular calcium concentration and immediate early gene expression in cultured hippocampal neurons , 1995, Neuroscience.

[74]  P. Nicotera,et al.  Nitric oxide: inducer or suppressor of apoptosis? , 1997, Trends in pharmacological sciences.

[75]  M. Ruberg,et al.  Neuropharmacologic aspects of apoptosis: significance for neurodegenerative diseases. , 1999, Clinical neuropharmacology.

[76]  L. Honig,et al.  Apoptosis and neurologic disease. , 2000, The American journal of medicine.

[77]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[78]  J. McNamara,et al.  Development of New Pharmacological Agents for Epilepsy: Lessons from the Kindling Model , 1989, Epilepsia.

[79]  Carlos Portera-Cailliau,et al.  Neurodegeneration in Excitotoxicity, Global Cerebral Ischemia, and Target Deprivation: A Perspective on the Contributions of Apoptosis and Necrosis , 1998, Brain Research Bulletin.

[80]  S. Lipton,et al.  Cytoskeletal Breakdown and Apoptosis Elicited by NO Donors in Cerebellar Granule Cells Require NMDA Receptor Activation , 1996, Journal of neurochemistry.

[81]  J. McNamara,et al.  NMDA receptor plasticity in the kindling model. , 1990, Advances in experimental medicine and biology.

[82]  J. Bolaños,et al.  Nitric oxide, energy metabolism and neurological disease. , 1997, Biochemical Society transactions.

[83]  D. Bredt Endogenous nitric oxide synthesis: biological functions and pathophysiology. , 1999, Free radical research.

[84]  T. Dawson,et al.  Nitric oxide in neurodegeneration. , 1998, Progress in brain research.

[85]  R. A. Solomon,et al.  Nitric Oxide Production During Focal Cerebral Ischemia in Rats , 1993, Stroke.

[86]  M. Beal,et al.  Bioenergetics in Huntington's Disease , 1999, Annals of the New York Academy of Sciences.

[87]  M. Ward,et al.  Glutamate Excitotoxicity and Neuronal Energy Metabolism , 1999, Annals of the New York Academy of Sciences.

[88]  M. Ward,et al.  Oxidative Stress, Mitochondrial Function, and Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1999, Journal of neurochemistry.

[89]  T. Dawson,et al.  Oxidative Stress and Genetics in the Pathogenesis of Parkinson's Disease , 2000, Neurobiology of Disease.

[90]  M. Ankarcrona Glutamate induced cell death: apoptosis or necrosis? , 1998, Progress in brain research.

[91]  Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia. , 1994 .

[92]  T. Sutula Experimental Models of Temporal Lobe Epilepsy: New Insights from the Study of Kindling and Synaptic Reorganization , 1990, Epilepsia.

[93]  O. Hansson,et al.  Mitochondrial Control of Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[94]  J. Mcculloch,et al.  Pharmacological modification of glutamate neurotoxicity in vivo , 1993, Brain Research.

[95]  B. George,et al.  Kindling model of epilepsy. , 1994, Methods and findings in experimental and clinical pharmacology.

[96]  P. V. Rayudu,et al.  Attenuation of NMDA Receptor Activity and Neurotoxicity by Nitroxyl Anion, NO− , 1999, Neuron.

[97]  S. Orrenius,et al.  Apoptosis in neuronal cells: role of caspases. , 1998, Neuroreport.

[98]  R. Prost,et al.  Detection of glutamate/glutamine resonances by 1H magnetic resonance spectroscopy at 0.5 tesla , 1997, Magnetic resonance in medicine.

[99]  J. Stamler,et al.  Neuroprotective and Neurodestructive Effects of Nitric Oxide and Redox Congeners , 1994, Annals of the New York Academy of Sciences.

[100]  Martin Schoell,et al.  Diamondoids and oil are not forever , 1999, Nature.

[101]  P. Akins,et al.  Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. , 1995, Journal of neurotrauma.

[102]  M. Mattson,et al.  Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. , 1995, Methods in cell biology.

[103]  R. Tolwani,et al.  Neurons and mechanisms of neuronal death in neurodegenerative diseases: a brief review. , 1999, Laboratory animal science.

[104]  S. Lipton,et al.  Excitatory amino acids as a final common pathway for neurologic disorders. , 1994, The New England journal of medicine.

[105]  S. Orrenius,et al.  The calcium ion and cell death. , 1994, Journal of neural transmission. Supplementum.

[106]  G. Rebillard,et al.  Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. , 1990, Acta oto-laryngologica. Supplementum.

[107]  S. Lipton,et al.  Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function , 1995, Neuron.

[108]  Y. Watanabe,et al.  NMDA Receptor Dependence of Kindling and Mossy Fiber Sprouting: Evidence that the NMDA Receptor Regulates Patterning of Hippocampal Circuits in the Adult Brain , 1996, The Journal of Neuroscience.

[109]  J. Stamler,et al.  Nitric oxide in the central nervous system. , 1994, Progress in brain research.

[110]  K. A. Jones,et al.  Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro , 1994, Neuroscience.

[111]  D. Bredt,et al.  Perspectives Series : Nitric Oxide and Nitric Oxide Synthases Nitric Oxide in Excitable Tissues : Physiological Roles and Disease , 2013 .

[112]  S. Lipton Ca2+, N-methyl-D-aspartate receptors, and AIDS-related neuronal injury. , 1994, International review of neurobiology.

[113]  D. Choi,et al.  Apoptosis and Necrosis in Cerebrovascular Disease , 1999, Annals of the New York Academy of Sciences.

[114]  W. Tatton,et al.  Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. , 1997, International review of neurobiology.

[115]  R. Wityk,et al.  Ischemic stroke: Today and tomorrow , 1994, Critical care medicine.