Tensor network complexity of multilinear maps

We study tensor networks as a model of arithmetic computation for evaluating multilinear maps. These capture any algorithm based on low border rank tensor decompositions, such as $O(n^{\omega+\epsilon})$ time matrix multiplication, and in addition many other algorithms such as $O(n \log n)$ time discrete Fourier transform and $O^*(2^n)$ time for computing the permanent of a matrix. However tensor networks sometimes yield faster algorithms than those that follow from low-rank decompositions. For instance the fastest known $O(n^{(\omega +\epsilon)t})$ time algorithms for counting $3t$-cliques can be implemented with tensor networks, even though the underlying tensor has border rank $n^{3t}$ for all $t \ge 2$. For counting homomorphisms of a general pattern graph $P$ into a host graph on $n$ vertices we obtain an upper bound of $O(n^{(\omega+\epsilon)\operatorname{bw}(P)/2})$ where $\operatorname{bw}(P)$ is the branchwidth of $P$. This essentially matches the bound for counting cliques, and yields small improvements over previous algorithms for many choices of $P$. While powerful, the model still has limitations, and we are able to show a number of unconditional lower bounds for various multilinear maps, including: (a) an $\Omega(n^{\operatorname{bw}(P)})$ time lower bound for counting homomorphisms from $P$ to an $n$-vertex graph, matching the upper bound if $\omega = 2$. In particular for $P$ a $v$-clique this yields an $\Omega(n^{\lceil 2v/3 \rceil})$ time lower bound for counting $v$-cliques, and for $P$ a $k$-uniform $v$-hyperclique we obtain an $\Omega(n^v)$ time lower bound for $k \ge 3$, ruling out tensor networks as an approach to obtaining non-trivial algorithms for hyperclique counting and the Max-$3$-CSP problem. (b) an $\Omega(2^{0.918n})$ time lower bound for the permanent of an $n \times n$ matrix.

[1]  Josh Alman,et al.  A Refined Laser Method and Faster Matrix Multiplication , 2020, SODA.

[2]  A. P. Gumbs,et al.  Finding , 2020, Definitions.

[3]  Ankur Moitra,et al.  Spectral methods from tensor networks , 2018, STOC.

[4]  D. Jackson,et al.  Knots , 2019, CMS Books in Mathematics.

[5]  Jeffrey S. Vetter,et al.  NVIDIA Tensor Core Programmability, Performance & Precision , 2018, 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[6]  Richard Ryan Williams,et al.  Tight Hardness for Shortest Cycles and Paths in Sparse Graphs , 2017, SODA.

[7]  Elina Robeva,et al.  Duality of Graphical Models and Tensor Networks , 2017, Information and Inference: A Journal of the IMA.

[8]  François Le Gall,et al.  Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor , 2017, SODA.

[9]  TENSOR NETWORK COMPLEXITY OF MULTILINEAR MAPS PER AUSTRIN , 2018 .

[10]  Marvin Künnemann,et al.  Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-and-Solve , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[11]  Masashi Sugiyama,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives , 2017, Found. Trends Mach. Learn..

[12]  Dániel Marx,et al.  Homomorphisms are a good basis for counting small subgraphs , 2017, STOC.

[13]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[14]  Robert A. van de Geijn,et al.  Generating Families of Practical Fast Matrix Multiplication Algorithms , 2016, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[15]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[16]  Petteri Kaski,et al.  A Faster Subquadratic Algorithm for Finding Outlier Correlations , 2015, SODA.

[17]  Andreas Björklund Below All Subsets for Some Permutational Counting Problems , 2016, SWAT.

[18]  Jin-Yi Cai,et al.  Holographic Algorithms , 2016, Encyclopedia of Algorithms.

[19]  Arnaud Durand,et al.  The Arithmetic Complexity of Tensor Contraction , 2016, Theory of Computing Systems.

[20]  Torsten Hoefler,et al.  Sparse Tensor Algebra as a Parallel Programming Model , 2015, ArXiv.

[21]  Amir Abboud,et al.  If the Current Clique Algorithms are Optimal, So is Valiant's Parser , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[22]  Alexander Schrijver On traces of tensor representations of diagrams , 2015 .

[23]  Joshua R. Wang,et al.  Finding Four-Node Subgraphs in Triangle Time , 2015, SODA.

[24]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[25]  Austin R. Benson,et al.  A framework for practical parallel fast matrix multiplication , 2014, PPoPP.

[26]  Victor Y. Pan,et al.  Matrix Multiplication, Trilinear Decompositions, APA Algorithms, and Summation , 2014, ArXiv.

[27]  John F. Stanton,et al.  A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..

[28]  Jason Morton,et al.  Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.

[29]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[30]  Ryan Williams,et al.  Faster all-pairs shortest paths via circuit complexity , 2013, STOC.

[31]  Andreas Björklund,et al.  Counting Thin Subgraphs via Packings Faster than Meet-in-the-Middle Time , 2013, SODA.

[32]  Frank Verstraete,et al.  Faster identification of optimal contraction sequences for tensor networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  MAURO WILLIAM BARBOSA DE ALMEIDA,et al.  Diagrams , 1977, HAU: Journal of Ethnographic Theory.

[34]  Linda C. van der Gaag,et al.  Probabilistic Graphical Models , 2014, Lecture Notes in Computer Science.

[35]  Andrzej Lingas,et al.  Detecting and Counting Small Pattern Graphs , 2013, SIAM J. Discret. Math..

[36]  Ran Raz Tensor-Rank and Lower Bounds for Arithmetic Formulas , 2013, JACM.

[37]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[38]  Christopher Umans,et al.  Fast matrix multiplication using coherent configurations , 2012, SODA.

[39]  Jin-Yi Cai,et al.  A complete dichotomy rises from the capture of vanishing signatures: extended abstract , 2012, STOC '13.

[40]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[41]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[42]  François Le Gall,et al.  Faster Algorithms for Rectangular Matrix Multiplication , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[43]  Yang Qi,et al.  On the geometry of tensor network states , 2011, Quantum Inf. Comput..

[44]  Fedor V. Fomin,et al.  Faster algorithms for finding and counting subgraphs , 2009, J. Comput. Syst. Sci..

[45]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[46]  Yuval Filmus Matrix Multiplication I , 2012 .

[47]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[48]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[49]  Erik Jan van Leeuwen,et al.  Faster Algorithms on Branch and Clique Decompositions , 2010, MFCS.

[50]  Zeph Landau,et al.  Quantum Computation and the Evaluation of Tensor Networks , 2008, SIAM J. Comput..

[51]  Noga Alon,et al.  Balanced families of perfect hash functions and their applications , 2007, TALG.

[52]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[53]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Theory of the Analytical Forms called Trees , 2009 .

[54]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[55]  Ryan Williams,et al.  Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.

[56]  Jürgen Richter-Gebert,et al.  Diagrams, Tensors and Geometric Reasoning , 2009, Discret. Comput. Geom..

[57]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[58]  Andreas Björklund,et al.  Counting Paths and Packings in Halves , 2009, ESA.

[59]  B. Mohar,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory B.

[60]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[61]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[62]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[63]  Markus Holzer,et al.  The Complexity of Tensor Circuit Evaluation , 2001, computational complexity.

[64]  Frederic Dorn,et al.  Dynamic Programming and Fast Matrix Multiplication , 2006, ESA.

[65]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[66]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[67]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[68]  C. Umans,et al.  Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[69]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[70]  Friedrich Eisenbrand,et al.  On the complexity of fixed parameter clique and dominating set , 2004, Theor. Comput. Sci..

[71]  Russell Impagliazzo,et al.  Models of Greedy Algorithms for Graph Problems , 2004, SODA '04.

[72]  Toniann Pitassi,et al.  Algorithms and complexity results for #SAT and Bayesian inference , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[73]  Maria J. Serna,et al.  Counting H-colorings of partial k-trees , 2001, Theor. Comput. Sci..

[74]  Günter Rote,et al.  Division-Free Algorithms for the Determinant and the Pfaffian: Algebraic and Combinatorial Approaches , 2001, Computational Discrete Mathematics.

[75]  Pierre McKenzie,et al.  The complexity of tensor calculus , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[76]  Richard J. Lipton,et al.  On the complexity of SAT , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[77]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[78]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[79]  Chi-Chung Lam,et al.  On Optimizing a Class of Multi-Dimensional Loops with Reductions for Parallel Execution , 1997, Parallel Process. Lett..

[80]  Dieter Kratsch,et al.  Finding and Counting Small Induced Subgraphs Efficiently , 1995, WG.

[81]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[82]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[83]  N. Nisan Lower Bounds for Non-Commutative Computation (Extended Abstract) , 1991, STOC 1991.

[84]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[85]  G. Kuperberg Involutory Hopf algebras and 3-manifold invariants , 1990, math/9201301.

[86]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[87]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .

[88]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[89]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[90]  A. Kennedy,et al.  Spinors in Negative Dimensions , 1982 .

[91]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[92]  Alon Itai,et al.  Finding a minimum circuit in a graph , 1977, STOC '77.

[93]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[94]  P. Cvitanović Group theory for Feynman diagrams in non-Abelian gauge theories , 1976 .

[95]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[96]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[97]  V. Strassen Gaussian elimination is not optimal , 1969 .

[98]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[99]  R. A. FISHER,et al.  The Design and Analysis of Factorial Experiments , 1938, Nature.

[100]  A. Kempe On the application of the Sylvester‐Clifford Graphs to Ordinary Binary Quantics. (Second Part.) , 1892 .

[101]  A. Kempe On the Application of Clifford's Graphs to Ordinary Binary Quantics , 1885 .

[102]  J. J. Sylvester,et al.  On an Application of the New Atomic Theory to the Graphical Representation of the Invariants and Covariants of Binary Quantics, With Three Appendices, [Continued] , 1878 .

[103]  Clifford Extract of a Letter to Mr. Sylvester from Prof. Clifford of University College, London , 1878 .

[104]  A. Clebsch Ueber symbolische Darstellung algebraischer Formen. , 1861 .

[105]  A. Cayley Esq. LVIII. On the analytical forms called trees.–Part II , 1859 .

[106]  R. Wolf Extract of a Letter to Mr. Carrington , 1859 .