The Bang Calculus and the Two Girard's Translations

We study the two Girard's translations of intuitionistic implication into linear logic by exploiting the bang calculus, a paradigmatic functional language with an explicit box-operator that allows both call-by-name and call-by-value lambda-calculi to be encoded in. We investigate how the bang calculus subsumes both call-by-name and call-by-value lambda-calculi from a syntactic and a semantic viewpoint.

[1]  Jürgen Giesl Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings , 2005, RTA.

[2]  Thomas Ehrhard The Scott model of linear logic is the extensional collapse of its relational model , 2012, Theor. Comput. Sci..

[3]  Paul Blain Levy,et al.  Call-by-Push-Value: A Subsuming Paradigm , 1999, TLCA.

[4]  Thomas Ehrhard,et al.  The Bang Calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value , 2016, PPDP.

[5]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[6]  Beniamino Accattoli,et al.  Proof nets and the call-by-value λ-calculus , 2012, Theor. Comput. Sci..

[7]  Beniamino Accattoli,et al.  Open Call-by-Value , 2016, APLAS.

[8]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[9]  Luca Roversi,et al.  The call-by-value λ-calculus: a semantic investigation , 1999 .

[10]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[11]  Thomas Ehrhard,et al.  Probabilistic coherence spaces as a model of higher-order probabilistic computation , 2011, Inf. Comput..

[12]  Thomas Ehrhard A Relative PCF-Definability Result for Strongly Stable Functions and some Corollaries , 1999, Inf. Comput..

[13]  Thomas Ehrhard,et al.  Collapsing non-idempotent intersection types , 2012, CSL.

[14]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[15]  Beniamino Accattoli,et al.  Types of Fireballs , 2018, APLAS.

[16]  Alex K. Simpson Reduction in a Linear Lambda-Calculus with Applications to Operational Semantics , 2005, RTA.

[17]  Luca Roversi,et al.  Lambda Calculus and Intuitionistic Linear Logic , 1997, Stud Logica.

[18]  Antonio Bucciarelli,et al.  On phase semantics and denotational semantics: the exponentials , 2001, Ann. Pure Appl. Log..

[19]  Martin Odersky,et al.  Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.

[20]  Thomas Ehrhard,et al.  Call-By-Push-Value from a Linear Logic Point of View , 2016, ESOP.

[21]  Andrew M. Pitts,et al.  Computational Adequacy via "Mixed" Inductive Definitions , 1993, MFPS.

[22]  Laurent Regnier,et al.  Lambda-calcul et reseaux , 1992 .

[23]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[24]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[25]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[26]  Paul Blain Levy,et al.  Call-by-push-value: Decomposing call-by-value and call-by-name , 2006, High. Order Symb. Comput..

[27]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[28]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[29]  Olivier Laurent Polarized Proof-Nets and Lambda µ-Calculus , 1999 .

[30]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[31]  Masako Takahashi Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..

[32]  Thomas Ehrhard Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..

[33]  P. Lincoln,et al.  Operational aspects of linear lambda calculus , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[34]  Paul-André Melliès CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .

[35]  Philip Wadler,et al.  Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.