暂无分享,去创建一个
[1] Jürgen Giesl. Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings , 2005, RTA.
[2] Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational model , 2012, Theor. Comput. Sci..
[3] Paul Blain Levy,et al. Call-by-Push-Value: A Subsuming Paradigm , 1999, TLCA.
[4] Thomas Ehrhard,et al. The Bang Calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value , 2016, PPDP.
[5] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[6] Beniamino Accattoli,et al. Proof nets and the call-by-value λ-calculus , 2012, Theor. Comput. Sci..
[7] Beniamino Accattoli,et al. Open Call-by-Value , 2016, APLAS.
[8] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[9] Luca Roversi,et al. The call-by-value λ-calculus: a semantic investigation , 1999 .
[10] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[11] Thomas Ehrhard,et al. Probabilistic coherence spaces as a model of higher-order probabilistic computation , 2011, Inf. Comput..
[12] Thomas Ehrhard. A Relative PCF-Definability Result for Strongly Stable Functions and some Corollaries , 1999, Inf. Comput..
[13] Thomas Ehrhard,et al. Collapsing non-idempotent intersection types , 2012, CSL.
[14] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[15] Beniamino Accattoli,et al. Types of Fireballs , 2018, APLAS.
[16] Alex K. Simpson. Reduction in a Linear Lambda-Calculus with Applications to Operational Semantics , 2005, RTA.
[17] Luca Roversi,et al. Lambda Calculus and Intuitionistic Linear Logic , 1997, Stud Logica.
[18] Antonio Bucciarelli,et al. On phase semantics and denotational semantics: the exponentials , 2001, Ann. Pure Appl. Log..
[19] Martin Odersky,et al. Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.
[20] Thomas Ehrhard,et al. Call-By-Push-Value from a Linear Logic Point of View , 2016, ESOP.
[21] Andrew M. Pitts,et al. Computational Adequacy via "Mixed" Inductive Definitions , 1993, MFPS.
[22] Laurent Regnier,et al. Lambda-calcul et reseaux , 1992 .
[23] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[24] Nick Benton,et al. A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.
[25] Thomas Ehrhard,et al. Finiteness spaces , 2005, Mathematical Structures in Computer Science.
[26] Paul Blain Levy,et al. Call-by-push-value: Decomposing call-by-value and call-by-name , 2006, High. Order Symb. Comput..
[27] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[28] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[29] Olivier Laurent. Polarized Proof-Nets and Lambda µ-Calculus , 1999 .
[30] Vincent Danos. La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .
[31] Masako Takahashi. Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..
[32] Thomas Ehrhard. Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..
[33] P. Lincoln,et al. Operational aspects of linear lambda calculus , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.
[34] Paul-André Melliès. CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .
[35] Philip Wadler,et al. Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.