Extreme visualization: squeezing a billion records into a million pixels

Database searches are usually performed with query languages and form fill in templates, with results displayed in tabular lists. However, excitement is building around dynamic queries sliders and other graphical selectors for query specification, with results displayed by information visualization techniques. These filtering techniques have proven to be effective for many tasks in which visual presentations enable discovery of relationships, clusters, outliers, gaps, and other patterns. Scaling visual presentations from millions to billions of records will require collaborative research efforts in information visualization and database management to enable rapid aggregation, meaningful coordinated windows, and effective summary graphics. This paper describes current and proposed solutions (atomic, aggregated, and density plots) that facilitate sense-making for interactive visual exploration of billion record data sets.

[1]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[2]  David Harel,et al.  Drawing Huge Graphs by Algebraic Multigrid Optimization , 2003, Multiscale Model. Simul..

[3]  Jim Hunter,et al.  Generating English summaries of time series data using the Gricean maxims , 2003, KDD '03.

[4]  Tamara Munzner,et al.  Drawing Large Graphs with H3Viewer and Site Manager , 1998, GD.

[5]  Ben Shneiderman,et al.  Knowledge discovery in high-dimensional data: case studies and a user survey for the rank-by-feature framework , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Chris North,et al.  An Evaluation of Microarray Visualization Tools for Biological Insight , 2004 .

[7]  Ben Shneiderman,et al.  Balancing Systematic and Flexible Exploration of Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[9]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[10]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[11]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[12]  Ben Shneiderman,et al.  Dynamic Aggregation to Support Pattern Discovery: A Case Study with Web Logs , 2001, Discovery Science.

[13]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Jussi Myllymaki,et al.  Visual exploration of large data sets , 1996, Electronic Imaging.

[15]  David Harel,et al.  ACE: a fast multiscale eigenvectors computation for drawing huge graphs , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[16]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[17]  Ben Shneiderman,et al.  The alphaslider: a compact and rapid selector , 1994, CHI Conference Companion.

[18]  Ben Shneiderman,et al.  Interactive pattern search in time series , 2005, IS&T/SPIE Electronic Imaging.

[19]  Robert L. Grossman,et al.  Graph-Theoretic Scagnostics , 2005, INFOVIS.

[20]  Sudipto Guha,et al.  Fast algorithms for hierarchical range histogram construction , 2002, PODS '02.

[21]  Chris North,et al.  Beyond visual acuity: the perceptual scalability of information visualizations for large displays , 2007, CHI.

[22]  Chris North,et al.  An insight-based methodology for evaluating bioinformatics visualizations , 2005, IEEE Transactions on Visualization and Computer Graphics.

[23]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[24]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[25]  Heidrun Schumann,et al.  A scalable framework for information visualization , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[26]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[27]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[28]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[29]  Pat Hanrahan,et al.  Multiscale Visualization Using Data Cubes InfoVis 2002 Best Paper , 2002 .

[30]  Ben Shneiderman,et al.  Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays , 1994 .

[31]  Ben Shneiderman,et al.  Visualizing Digital Library Search Results with Categorical and Hierarchical Axes , 2003 .

[32]  Benjamin B. Bederson,et al.  Implementing a zooming User Interface: experience building Pad++ , 1998, Softw. Pract. Exp..

[33]  Nicholas Chen,et al.  TreeJuxtaposer : Scalable Tree Comparison using Focus + Context with Guaranteed Visibility , 2006 .

[34]  Matthew O. Ward,et al.  Hierarchical visual data mining for large-scale data , 2004, Comput. Stat..

[35]  Ben Shneiderman,et al.  Dynamic query tools for time series data sets: timebox widgets for interactive exploration , 2004 .

[36]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[37]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[38]  Catherine Plaisant,et al.  SpaceTree: supporting exploration in large node link tree, design evolution and empirical evaluation , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[39]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[40]  Pat Hanrahan,et al.  Multiscale visualization using data cubes , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[41]  Stuart K. Card,et al.  Degree-of-interest trees: a component of an attention-reactive user interface , 2002, AVI '02.

[42]  Noureddine Mouaddib,et al.  General Purpose Database Summarization , 2005, VLDB.

[43]  A. Karr,et al.  Visual Scalability , 2002 .

[44]  MeyerJon,et al.  Implementing a zooming user interface , 1998 .

[45]  Pak Chung Wong,et al.  A dynamic multiscale magnifying tool for exploring large sparse graphs , 2008 .

[46]  B. Shneiderman,et al.  A Node Aggregation Strategy to Reduce Complexity of Network Visualization using Semantic Substrates , 2008 .

[47]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[48]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[49]  Chaomei Chen,et al.  Top 10 Unsolved Information Visualization Problems , 2005, IEEE Computer Graphics and Applications.