Linked Data Annotation and Fusion driven by Data Quality Evaluation

In this work, we are interested in exploring the problem of \emph{data fusion}, starting from reconciled datasets whose objects are linked with semantic sameAs relations. We attempt to merge the often conflicting information of these reconciled objects in order to obtain unified representations that only contain the best quality information.

[1]  Elena Console,et al.  Data Fusion , 2009, Encyclopedia of Database Systems.

[2]  Fatiha Saïs,et al.  Reference Fusion and Flexible Querying , 2008, OTM Conferences.

[3]  François Scharffe,et al.  Data Linking , 2013, J. Web Semant..

[4]  Christian Bizer,et al.  Sieve: linked data quality assessment and fusion , 2012, EDBT-ICDT '12.

[5]  Fatiha Saïs,et al.  Ontology-Driven Possibilistic Reference Fusion , 2010, OTM Conferences.

[6]  Nathalie Pernelle,et al.  Combining a Logical and a Numerical Method for Data Reconciliation , 2009, J. Data Semant..

[7]  María Poveda-Villalón,et al.  Using Provenance for Quality Assessment and Repair in Linked Open Data , 2012, EvoDyn@ISWC.

[8]  Nathalie Pernelle,et al.  An automatic key discovery approach for data linking , 2013, J. Web Semant..