FDTD Analysis of EW Wave Circulating by a Magnetized Ferrite Body in Free Space

An efficient numerical method has been devised for the study of wave circulating by a magnetised ferrite body of an arbitrary shape. It is a finite-difference time-domain formulation that incorporates Mur's absorbing boundary conditions and a perfectly matched layer. Several shapes of interest have been studied, including spheres, circular cylinders. The electromagnetic fields inside ferrite and the power-density distribution on the ferrite's surface normal to the bias external magnetic field are obtained. It is observed that an incident plane wave would circulate around the magnetised ferrite body in an open space as if the ferrite were placed inside a waveguide junction circulator.