Quantitative Estimates of the Threshold Phenomena for Propagation in Reaction-Diffusion Equations

We focus on the (sharp) threshold phenomena arising in some reaction-diffusion equations supplemented with some compactly supported initial data. In the so-called ignition and bistable cases, we prove the first sharp quantitative estimate on the (sharp) threshold values. Furthermore, numerical explorations allow to conjecture some refined estimates. Last we provide related results in the case of a degenerate monostable nonlinearity "not enjoying the hair trigger effect". AMS Subject Classifications: 35K57 (Reaction-diffusion equations), 35K15 (Initial value problems for second-order parabolic equations), 35B40 (Asymptotic behavior of solutions).

[1]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[2]  Yihong Du,et al.  Convergence and sharp thresholds for propagation in nonlinear diffusion problems , 2010 .

[3]  A. Ducrot,et al.  Population invasion with bistable dynamics and adaptive evolution: The evolutionary rescue , 2018, Proceedings of the American Mathematical Society.

[4]  L. Peletier,et al.  Nonlinear diffusion in population genetics , 1977 .

[5]  Hiroshi Fujita,et al.  On the blowing up of solutions of the Cauchy problem for $u_1+\Delta u+u^{1+\alpha} , 1966 .

[6]  Wanda Krassowska,et al.  Initiation of propagation in a one-dimensional excitable medium , 1997 .

[7]  P. Polácik,et al.  Threshold Solutions and Sharp Transitions for Nonautonomous Parabolic Equations on $${\mathbb{R}^N}$$ , 2011 .

[8]  Luděk Berec,et al.  What are Allee effects , 2008 .

[9]  I. Idris,et al.  Analytical approach to initiation of propagating fronts. , 2008, Physical review letters.

[10]  Zachary P. Kilpatrick,et al.  Threshold of Front Propagation in Neural Fields: An Interface Dynamics Approach , 2018, SIAM J. Appl. Math..

[11]  Andrej Zlatos,et al.  Sharp transition between extinction and propagation of reaction , 2005, math/0504333.

[12]  C. B. Muratov,et al.  Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations , 2012, 1203.4623.

[13]  G. Flores The stable manifold of the standing wave of the Nagumo equation , 1989 .

[14]  Victor H. Moll,et al.  Stabilization to the standing wave in a simple caricature of the nerve equation , 1986 .

[15]  C. B. Muratov,et al.  Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations , 2015, 1506.09146.

[16]  Calculation of the threshold surface for nerve equations , 1990 .

[17]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[18]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[19]  D. Terman A Free Boundary Problem Arising from a Bistable Reaction-Diffusion Equation , 1983 .

[20]  Andrew R. Kanarek,et al.  Allee effects, adaptive evolution, and invasion success , 2010, Evolutionary applications.