Multivariate visualization for atmospheric pollution

Multivariate visualization for atmospheric pollution is a challenging research topic. Appropriate algorithms and data structures based on modern graphics hardware are used to obtain high performance. 3D visualization of the atmospheric wind field and pollutant concentrations can easily result in visual perception problems such as occlusion and cluttering even artifacts. To solve the above issues, a K-means clustering technique is used in combination with a similarity metric between streamlines based on an iterative closest point method to cluster the initial streamlines. A small set of streamlines is then selected to represent the prominent structure of the wind field. The proper illumination model and the depth sorting method reduce the inter-occlusion between streamlines and isosurfaces to show much clearer wind field pattern and important features effectively. The atmospheric pollution data set is employed to evaluate the proposed algorithm framework.

[1]  Christophe Hurter,et al.  Functional Decomposition for Bundled Simplification of Trail Sets , 2018, IEEE Transactions on Visualization and Computer Graphics.

[2]  T. Itoh,et al.  A Streamline Selection Technique for Integrated Scalar and Vector Visualization , 2009 .

[3]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[4]  Vivek Verma,et al.  A flow-guided streamline seeding strategy , 2000 .

[5]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[7]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[8]  Han-Wei Shen,et al.  Image-based streamline generation and rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[9]  Eduard Gröller,et al.  Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines , 2003, SCCG '03.

[10]  Dengming Zhu,et al.  Efficient level of detail for texture‐based flow visualization , 2016, Comput. Animat. Virtual Worlds.

[11]  Hamish A. Carr,et al.  Accelerating marching cubes with graphics hardware , 2006, CASCON.

[12]  Jun Tao,et al.  FlowNet: A Deep Learning Framework for Clustering and Selection of Streamlines and Stream Surfaces , 2020, IEEE Transactions on Visualization and Computer Graphics.

[13]  Robert S. Laramee,et al.  Advanced, Automatic Stream Surface Seeding and Filtering , 2012, TPCG.

[14]  Robert S. Laramee,et al.  Automatic Stream Surface Seeding , 2011, Eurographics.

[15]  David L. Kao,et al.  Strategy for seeding 3D streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Andreas Kolb,et al.  GPU-based Dynamic Flow Visualization for Climate Research Applications , 2007, SimVis.

[17]  Robert J. Moorhead,et al.  Topology-Aware Evenly Spaced Streamline Placement , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Hans-Peter Seidel,et al.  High‐speed Marching Cubes using HistoPyramids , 2008, Comput. Graph. Forum.

[20]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[21]  William J. Schroeder,et al.  Flying edges: A high-performance scalable isocontouring algorithm , 2015, 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[22]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[23]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[24]  Rüdiger Westermann,et al.  A particle system for interactive visualization of 3D flows , 2005, IEEE Transactions on Visualization and Computer Graphics.

[25]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[26]  Xiaoyang Mao,et al.  Image-guided streamline placement on curvilinear grid surfaces , 1998 .

[27]  Koji Koyamada Visualization of simulated airflow in a clean room , 1992, Proceedings Visualization '92.

[28]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[29]  Aaron Knoll,et al.  Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data , 2015, Comput. Graph. Forum.

[30]  Dengming Zhu,et al.  Optimal Viewpoint Selection for Texture-based Flow Visualization , 2017 .

[31]  Theo van Walsum,et al.  Particle Tracing Algorithms for 3D Curvilinear Grids , 1994, Scientific Visualization.

[32]  Robert J. Moorhead,et al.  An Advanced Evenly-Spaced Streamline Placement Algorithm , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Hans-Christian Hege,et al.  Fast Display of Illuminated Field Lines , 1997, IEEE Trans. Vis. Comput. Graph..

[34]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[35]  Henry Neeman A decomposition algorithm for visualizing irregular grids , 1990, SIGGRAPH 1990.

[36]  Thomas Ertl,et al.  GPU-Based Streamlines for Surface-Guided 3D Flow Visualization , 2008, VMV.

[37]  Filip Sadlo,et al.  Illuminated lines revisited , 2005, VIS 05. IEEE Visualization, 2005..

[38]  Daying Lu Information-theoretic exploration for texture-based visualization , 2017, J. Vis..

[39]  Bernd Hamann,et al.  Dense Geometric Flow Visualization , 2005, EuroVis.

[40]  Kwan-Liu Ma,et al.  View-Dependent Streamlines for 3D Vector Fields , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Hamish A. Carr,et al.  Jacobi Fiber Surfaces for Bivariate Reeb Space Computation , 2017, IEEE Transactions on Visualization and Computer Graphics.

[42]  王兆其,et al.  Streamline Selection Algorithm for Three-Dimensional Flow Fields , 2013 .