Automatic microseismic event picking via unsupervised machine learning

Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.

[1]  Yangkang Chen,et al.  Fast dictionary learning for noise attenuation of multidimensional seismic data , 2017, Geophysical Journal International.

[2]  Sergey Fomel,et al.  Data‐driven time–frequency analysis of seismic data using non‐stationary Prony method , 2018 .

[3]  Yangkang Chen,et al.  Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning , 2017, Signal Process..

[4]  Yangkang Chen,et al.  Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data , 2017 .

[5]  Xiao Pan,et al.  Iterative deblending of simultaneous-source data using a coherency-pass shaping operator , 2017 .

[6]  Yangkang Chen,et al.  Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring , 2017, Scientific Reports.

[7]  Yangkang Chen,et al.  Mathematical morphological filtering for linear noise attenuation of seismic data , 2017 .

[8]  Yufeng Wang,et al.  Three-Operator Proximal Splitting Scheme for 3-D Seismic Data Reconstruction , 2017, IEEE Geoscience and Remote Sensing Letters.

[9]  Yangkang Chen,et al.  Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D seismic data , 2017 .

[10]  Yatong Zhou,et al.  Spike-Like Blending Noise Attenuation Using Structural Low-Rank Decomposition , 2017, IEEE Geoscience and Remote Sensing Letters.

[11]  Shaohuan Zu,et al.  Application of Principal Component Analysis in Weighted Stacking of Seismic Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[12]  Yangkang Chen,et al.  Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage , 2017, IEEE Geoscience and Remote Sensing Letters.

[13]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[14]  Yatong Zhou,et al.  Empirical Low-Rank Approximation for Seismic Noise Attenuation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Yangkang Chen,et al.  Double Least-Squares Projections Method for Signal Estimation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Yangkang Chen,et al.  Signal extraction using randomized-order multichannel singular spectrum analysis , 2017 .

[17]  Wei Liu,et al.  Spectral Decomposition for Hydrocarbon Detection Based on VMD and Teager–Kaiser Energy , 2017, IEEE Geoscience and Remote Sensing Letters.

[18]  Danilo R. Velis,et al.  A simple method inspired by empirical mode decomposition for denoising seismic data , 2016 .

[19]  Yangkang Chen,et al.  Simultaneous Sources Separation via an Iterative Rank-Increasing Method , 2016, IEEE Geoscience and Remote Sensing Letters.

[20]  Runqiu Wang,et al.  Weak signal detection using multiscale morphology in microseismic monitoring , 2016 .

[21]  Wei Chen,et al.  An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction , 2016, Comput. Geosci..

[22]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[23]  S. Mostafa Mousavi,et al.  Adaptive noise estimation and suppression for improving microseismic event detection , 2016 .

[24]  Yangkang Chen,et al.  Multi-step damped multichannel singular spectrum analysis for simultaneous reconstruction and denoising of 3D seismic data , 2016 .

[25]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[26]  Wei Liu,et al.  Applications of variational mode decomposition in seismic time-frequency analysis , 2016 .

[27]  Yangkang Chen,et al.  Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter , 2016 .

[28]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[29]  Erol Kalkan,et al.  An Automatic P‐Phase Arrival‐Time Picker , 2016 .

[30]  Yangkang Chen,et al.  A periodically varying code for improving deblending of simultaneous sources in marine acquisition , 2016 .

[31]  Yangkang Chen,et al.  A method for low-frequency noise suppression based on mathematical morphology in microseismic monitoring , 2016 .

[32]  Yangkang Chen,et al.  Simultaneous-Source Separation Using Iterative Seislet-Frame Thresholding , 2016, IEEE Geoscience and Remote Sensing Letters.

[33]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2015, GEOPHYSICS.

[34]  Seyed Mostafa Mousavi,et al.  Fast and novel microseismic detection using time-frequency analysis , 2016 .

[35]  Yangkang Chen,et al.  Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization , 2016 .

[36]  Yangkang Chen,et al.  Separation of simultaneous sources using a structural-oriented median filter in the flattened dimension , 2016, Comput. Geosci..

[37]  Wei Liu,et al.  Seismic Time–Frequency Analysis via Empirical Wavelet Transform , 2016, IEEE Geoscience and Remote Sensing Letters.

[38]  Mirko van der Baan,et al.  Comparison of the STA/LTA and power spectral density methods for microseismic event detection , 2015 .

[39]  Jiajun Han,et al.  Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding , 2015 .

[40]  Mauricio D. Sacchi,et al.  Fast and automatic microseismic phase-arrival detection and denoising by pattern recognition and reduced-rank filtering , 2015 .

[41]  Siyuan Cao,et al.  Ground Roll Attenuation Using Variational Mode Decomposition , 2015 .

[42]  Miaki Ishii,et al.  Continuous Wavelet Decomposition Algorithms for Automatic Detection of Compressional‐ and Shear‐Wave Arrival Times , 2015 .

[43]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[44]  M. Senkaya,et al.  A Semi-Automatic Approach to Identify First Arrival Time: the Cross-Correlation Technique (CCT) , 2015 .

[45]  Mauricio D. Sacchi,et al.  Radon transform-based microseismic event detection and signal-to-noise ratio enhancement , 2015 .

[46]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[47]  Mark E. Willis,et al.  An effective noise-suppression technique for surface microseismic data , 2013 .

[48]  Jérôme Gilles,et al.  Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.

[49]  Xiaohong Chen,et al.  Noncausal f–x–y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data , 2013 .

[50]  Sergey Fomel,et al.  Seismic data decomposition into spectral components using regularized nonstationary autoregression , 2012 .

[51]  Guochang Liu,et al.  Random noise attenuation using f-x regularized nonstationary autoregression , 2012 .

[52]  M. Sacchi,et al.  Microseismic data denoising using a 3C group sparsity constrained time-frequency transform , 2012 .

[53]  Fuxian Song,et al.  Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring , 2011 .

[54]  M. Toksöz,et al.  An improved method for hydrofracture induced microseismic event detection and phase picking , 2010 .

[55]  Michael Fehler,et al.  Petroleum reservoir characterization using downhole microseismic monitoring , 2010 .

[56]  Danilo R. Velis,et al.  Automatic first-breaks picking: New strategies and algorithms , 2010 .

[57]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[58]  Steven J. Gibbons,et al.  Detection and characterization of seismic phases using continuous spectral estimation on incoherent and partially coherent arrays , 2008 .

[59]  M. Nafi Toksöz,et al.  Fracture mapping in the Soultz-sous-Forêts geothermal field using microearthquake locations , 2007 .

[60]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[61]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[62]  Tomáš Fischer,et al.  Detection of repeated hydraulic fracturing (out-of-zone growth) by microseismic monitoring , 2006 .

[63]  F. Ringdal,et al.  The detection of low magnitude seismic events using array-based waveform correlation , 2006 .

[64]  Stephen J. Arrowsmith,et al.  A technique for identifying microseismic multiplets and application to the Valhall field, North Sea , 2006 .

[65]  Xingyao Yin,et al.  Seismic Data Analysis Based on Fuzzy Clustering , 2006 .

[66]  Seismic Data Analysis Based on Fuzzy Clustering , 2006, 2006 8th international Conference on Signal Processing.

[67]  Clifford H. Thurber,et al.  Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings , 2003 .

[68]  M. Leonard,et al.  Comparison of Manual and Automatic Onset Time Picking , 2000 .

[69]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[70]  Christopher John Young,et al.  A comparison of select trigger algorithms for automated global seismic phase and event detection , 1998, Bulletin of the Seismological Society of America.

[71]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[72]  Michael E. Murat,et al.  AUTOMATED FIRST ARRIVAL PICKING: A NEURAL NETWORK APPROACH1 , 1992 .

[73]  Peter M. Shearer,et al.  Imaging global body wave phases by stacking long‐period seismograms , 1991 .

[74]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[75]  F. Coppens,et al.  First arrival picking on common-offset trace collections for automatic estimation of static corrections , 1985 .

[76]  B. Gelchinsky,et al.  AUTOMATIC PICKING OF FIRST ARRIVALS AND PARAMETERIZATION OF TRAVELTIME CURVES , 1983 .

[77]  P. J. Hatherly A computer method for determining seismic first arrival times , 1982 .

[78]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[79]  R. V. Allen,et al.  Automatic earthquake recognition and timing from single traces , 1978, Bulletin of the Seismological Society of America.

[80]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .