Bowtie-free graphs have a Ramsey lift

A bowtie is a graph consisting of two triangles with one vertex identified. We show that the class of all (countable) graphs not containing a bowtie as a subgraph have a Ramsey lift (expansion). This is the first non-trivial Ramsey class with a non-trivial algebraic closure.

[1]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[2]  Vojtěch Rödl,et al.  Ramsey theorem for classes of hypergraphs with forbidden complete subhypergraphs , 1979 .

[3]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[4]  Jaroslav Nesetril,et al.  For graphs there are only four types of hereditary Ramsey classes , 1989, J. Comb. Theory, Ser. B.

[5]  Claude Laflamme,et al.  Ramsey Precompact Expansions of Homogeneous Directed Graphs , 2013, Electron. J. Comb..

[6]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[7]  Jaroslav Nesetril,et al.  Universal Structures with Forbidden Homomorphisms , 2015, Logic Without Borders.

[8]  Gregory Cherlin,et al.  Universal graphs with a forbidden near-path or 2-bouquet , 2007 .

[9]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[10]  Jaroslav Nesetril,et al.  Ramsey classes with forbidden homomorphisms and a closure , 2015, Electron. Notes Discret. Math..

[11]  Richard D. Ringeisen Survey of results on the maximum genus of a graph , 1979, J. Graph Theory.

[12]  Nathanael Ackerman,et al.  INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES , 2012, Forum of Mathematics, Sigma.

[13]  Péter Komjáth Some remarks on universal graphs , 1999, Discret. Math..

[14]  Lionel Nguyen Van Th'e,et al.  More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions , 2012, 1201.1270.

[15]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[16]  Gregory L. Cherlin,et al.  Forbidden substructures and combinatorial dichotomies: WQO and universality , 2011, Discret. Math..

[17]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[18]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[19]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .