Simulation-based exact jump tests in models with conditional heteroskedasticity

In models which allow for random jumps, statistical tests for jumps are typically non-standard and nuisance parameter-dependent. To handle these problems, we combine bounds and MonteCarlo (MC) simulation techniques to derive nuisance-parameter-free bounds and obtain level-exact p-values for a wide class of processes with random jumps and time varying heteroskedasticity. When identified nuisance parameters are absent under the null, we show that MC p-values are finite sample, level-exact. To illustrate this easy-to-implement approach, we analyze the spot prices of four commodities (aluminium, copper, gold and lead) and the closing prices of four technology stocks (Intel, Microsoft, Oracle and Sun). We find significant jumps in these time series. Our approach can easily be extended to other nuisance-parameter dependent tests. (C) 2003 Elsevier B.V. All rights reserved.

[1]  Jean-Marie Dufour,et al.  Invariance, Nonlinear Models and Asymptotic Tests , 1991 .

[2]  Philippe Jorion On Jump Processes in the Foreign Exchange and Stock Markets , 1988 .

[3]  Jean-Marie Dufour,et al.  Nonlinear hypotheses, inequality restrictions, and non-nested hypotheses: exact simultaneous tests in linear regressions , 1989 .

[4]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[5]  D. Giles,et al.  Computer-aided econometrics , 2003 .

[6]  Jean-Marie Dufour,et al.  Exact Tests for Contemporaneous Correlation of Disturbances in Seemingly Unrelated Regressions * , 2022 .

[7]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[8]  Jean-Marie Dufour,et al.  Simulation-Based Finite and Large Sample Tests in Multivariate Regressions , 2002 .

[9]  Lynda Khalaf,et al.  On Jumps and Arch Effects in Natural Resource Prices. An Application to Stumpage Prices from Pacific Northwest National Forests , 2000 .

[10]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[11]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[12]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[13]  Jean-Marie Dufour,et al.  Simulation�?Based Finite Sample Normality Tests in Linear Regressions , 1998 .

[14]  Eric Zivot,et al.  Inference on Structural Parameters In Instrumental Variables Regression With Weak Instruments , 1998 .

[15]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[16]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[17]  Jean-Marie Dufour,et al.  Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models , 1997 .

[18]  T. Nijman,et al.  Temporal Aggregation of GARCH Processes. , 1993 .

[19]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[20]  B. Brorsen,et al.  NONLINEAR DYNAMICS AND THE DISTRIBUTION OF DAILY STOCK INDEX RETURNS , 1994 .

[21]  Eric Zivot,et al.  Inference on a Structural Parameter in Instrumental Variables Regression with Weak Instruments , 1996 .

[22]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[23]  David S. Bates Post-&Apos;87 Crash Fears in S&P 500 Futures Options , 1997 .

[24]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[25]  W. Torous,et al.  On Jumps in Common Stock Prices and Their Impact on Call Option Pricing , 1985 .

[26]  Jean-Marie Dufour,et al.  Simulation-based finite-sample tests for heteroskedasticity and ARCH effects , 2004 .

[27]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[28]  Gurdip Bakshi,et al.  Pricing and hedging long-term options , 2000 .

[29]  G. Geoffrey Booth,et al.  Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements , 1988 .

[30]  Jean-Marie Dufour,et al.  Finite-sample Simulation-based Tests in Seemingly Unrelated Regressions A , 2022 .

[31]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[32]  Lynda Khalaf,et al.  Simulation-Based Tests of PTM , 2002 .

[33]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[34]  D. Andrews Testing When a Parameter Is on the Boundary of the Maintained Hypothesis , 2001 .

[35]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[36]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[37]  Franz C. Palm,et al.  The message in weekly exchange rates in the European Monetary System: mean reversion , 1993 .

[38]  Lynda Khalaf,et al.  On Jumps and Arch Effects in Natural Resource Prices: An Application to Pacific Northwest Stumpage Prices , 2002 .

[39]  H. Thompson,et al.  Jump‐Diffusion Processes and the Term Structure of Interest Rates , 1988 .

[40]  Stacie Beck Autoregressive conditional heteroscedasticity in commodity spot prices , 2001 .

[41]  Sanjiv Ranjan Das The Surprise Element: Jumps in Interest Rates , 2002 .

[42]  T. Nijman,et al.  Estimation and testing in models containing both jumps and conditional heteroscedasticity , 1998 .

[43]  Anil K. Bera,et al.  A test for the presence of conditional heteroskedasticity within ARCH-M framework , 1995 .

[44]  David S. Bates Dollar jump fears, 1984–1992: distributional abnormalities implicit in currency futures options , 1996 .

[45]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[46]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[47]  Badi H. Baltagi,et al.  A companion to theoretical econometrics , 2003 .

[48]  Jin-Chuan Duan,et al.  Augmented GARCH (p,q) process and its diffusion limit , 1997 .