暂无分享,去创建一个
[1] Rüdiger Weiner,et al. Superconvergent IMEX peer methods , 2018, Applied Numerical Mathematics.
[2] Emil M. Constantinescu,et al. Extrapolated Implicit-Explicit Time Stepping , 2009, SIAM J. Sci. Comput..
[3] Giacomo Dimarco,et al. Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations , 2016, SIAM J. Numer. Anal..
[4] Xiangmin Jiao,et al. Optimal and Low-Memory Near-Optimal Preconditioning of Fully Implicit Runge-Kutta Schemes for Parabolic PDEs , 2020, SIAM J. Sci. Comput..
[5] Adrian Sandu,et al. A Generalized-Structure Approach to Additive Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..
[6] Fotini Karakatsani,et al. Linearly implicit methods for nonlinear evolution equations , 2003, Numerische Mathematik.
[7] Hao Chen,et al. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .
[8] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[9] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[10] Zdzislaw Jackiewicz,et al. Highly stable implicit-explicit Runge-Kutta methods , 2017 .
[11] M. Minion. Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .
[12] M. Calvo,et al. Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .
[13] A. Sayfy,et al. Additive methods for the numerical solution of ordinary differential equations , 1980 .
[14] Michael L. Minion,et al. Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equations , 2005 .
[15] Tommaso Buvoli. Polynomial-Based Methods for Time-Integration , 2018 .
[16] Per-Olof Persson,et al. Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations , 2017, J. Comput. Phys..
[17] E. Hairer,et al. Stiff differential equations solved by Radau methods , 1999 .
[18] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[19] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[20] Tommaso Buvoli. Exponential Polynomial Block Methods , 2021, SIAM J. Sci. Comput..
[21] Adrian Sandu,et al. High Order Implicit-explicit General Linear Methods with Optimized Stability Regions , 2014, SIAM J. Sci. Comput..
[22] M. Carpenter,et al. Higher-order additive Runge–Kutta schemes for ordinary differential equations , 2019, Applied Numerical Mathematics.
[23] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[24] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[25] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[26] Colin B. Macdonald,et al. Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..
[27] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[28] Tommaso Buvoli. A Class of Exponential Integrators Based on Spectral Deferred Correction , 2014 .
[29] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[30] SEBASTIANO BOSCARINO. Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..
[31] A. Cardone,et al. Extrapolation-based implicit-explicit general linear methods , 2013, Numerical Algorithms.
[32] Dong Wang,et al. VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS * , 2008 .
[33] Adrian Sandu,et al. Construction of highly stable implicit-explicit general linear methods , 2015 .