FRAMEWORK AND FULLY-IMPLICIT

In this paper we generalize the polynomial time integration framework to additively partitioned initial value problems. The framework we present is general and enables the construction of many new families of additive integrators with arbitrary order-of-accuracy and varying degree of implicitness. In this first work, we focus on a new class of implicit-explicit polynomial block methods that are based on fully-implicit Runge-Kutta methods with Radau nodes. We show that the new integrators have improved stability compared to existing IMEX Runge-Kutta methods, while also being more computationally efficient due to recent developments in preconditioning techniques for solving the associated systems of nonlinear equations. For PDEs on periodic domains where the implicit component is trivial to invert, we will show how parallelization of the right-hand-side evaluations can be exploited to obtain significant speedup compared to existing serial IMEX Runge-Kutta methods. For parallel (in space) finite-element discretizations, the new methods obtain accuracy several orders of magnitude lower than existing IMEX Runge-Kutta methods, and/or obtain a given accuracy as much as 16 times faster in terms of computational runtime.

[1]  Rüdiger Weiner,et al.  Superconvergent IMEX peer methods , 2018, Applied Numerical Mathematics.

[2]  Emil M. Constantinescu,et al.  Extrapolated Implicit-Explicit Time Stepping , 2009, SIAM J. Sci. Comput..

[3]  Giacomo Dimarco,et al.  Implicit-Explicit Linear Multistep Methods for Stiff Kinetic Equations , 2016, SIAM J. Numer. Anal..

[4]  Xiangmin Jiao,et al.  Optimal and Low-Memory Near-Optimal Preconditioning of Fully Implicit Runge-Kutta Schemes for Parabolic PDEs , 2020, SIAM J. Sci. Comput..

[5]  Adrian Sandu,et al.  A Generalized-Structure Approach to Additive Runge-Kutta Methods , 2015, SIAM J. Numer. Anal..

[6]  Fotini Karakatsani,et al.  Linearly implicit methods for nonlinear evolution equations , 2003, Numerische Mathematik.

[7]  Hao Chen,et al.  A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods , 2014 .

[8]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  Zdzislaw Jackiewicz,et al.  Highly stable implicit-explicit Runge-Kutta methods , 2017 .

[11]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[12]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[13]  A. Sayfy,et al.  Additive methods for the numerical solution of ordinary differential equations , 1980 .

[14]  Michael L. Minion,et al.  Implications of the Choice of Quadrature Nodes for Picard Integral Deferred Corrections Methods for Ordinary Differential Equations , 2005 .

[15]  Tommaso Buvoli Polynomial-Based Methods for Time-Integration , 2018 .

[16]  Per-Olof Persson,et al.  Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations , 2017, J. Comput. Phys..

[17]  E. Hairer,et al.  Stiff differential equations solved by Radau methods , 1999 .

[18]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[19]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[20]  Tommaso Buvoli Exponential Polynomial Block Methods , 2021, SIAM J. Sci. Comput..

[21]  Adrian Sandu,et al.  High Order Implicit-explicit General Linear Methods with Optimized Stability Regions , 2014, SIAM J. Sci. Comput..

[22]  M. Carpenter,et al.  Higher-order additive Runge–Kutta schemes for ordinary differential equations , 2019, Applied Numerical Mathematics.

[23]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[24]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[25]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[26]  Colin B. Macdonald,et al.  Parallel High-Order Integrators , 2010, SIAM J. Sci. Comput..

[27]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[28]  Tommaso Buvoli A Class of Exponential Integrators Based on Spectral Deferred Correction , 2014 .

[29]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[30]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[31]  A. Cardone,et al.  Extrapolation-based implicit-explicit general linear methods , 2013, Numerical Algorithms.

[32]  Dong Wang,et al.  VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS * , 2008 .

[33]  Adrian Sandu,et al.  Construction of highly stable implicit-explicit general linear methods , 2015 .