Hardness-packing density scaling relations for cohesive-frictional porous materials

Abstract Recent progress in instrumented nanoindentation makes it possible today to test in situ phase properties and structures of porous materials that cannot be recapitulated ex situ in bulk form. But it requires a rigorous indentation analysis to translate indentation data into meaningful mechanical properties. This paper reports the development and implementation of a multi-scale indentation analysis based on limit analysis, for the assessment of strength properties of cohesive-frictional porous materials from hardness measurements. Based on the separation-of-scale condition, we implement an elliptical strength criterion which results from the nonlinear homogenization of the strength properties of the constituents (cohesion and friction), the porosity and the microstructure, into a computational yield design approach to indentation analysis. We identify the resulting upper bound problem as a second-order conical optimization problem, for which advanced optimization algorithms became recently available. The upper bound yield design solutions are benchmarked against solutions from comprehensive elastoplastic contact mechanics finite element solutions and lower bound solutions. Furthermore, from a detailed parameter study based on intensive computational simulations, we identify characteristic hardness–packing density scaling relations for cohesive-frictional porous materials. These scaling relations which are developed for two pore-morphologies, a matrix–pore morphology and a polycrystal (perfect disordered) morphology, are most suitable for the reverse analysis of the strength parameters of cohesive-frictional solids from indentation hardness measurements.

[1]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[2]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[3]  F. J. Lockett Indentation of a rigid/plastic material by a conical indenter , 1963 .

[4]  N. R. Chitkara,et al.  Numerical construction of axisymmetric slip-line fields for indentation of thick blocks by rigid conical indenters and friction at the tool-metal interface , 1992 .

[5]  J. Pastor,et al.  Mise en oeuvre numerique des methodes de l'analyse limite pour les materiaux de von mises et de Coulomb standards en deformation plane , 1976 .

[6]  H. Jaeger,et al.  Physics of the Granular State , 1992, Science.

[7]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[8]  Jiming Peng,et al.  Self-regularity - a new paradigm for primal-dual interior-point algorithms , 2002, Princeton series in applied mathematics.

[9]  W. Kreher,et al.  Residual stresses and stored elastic energy of composites and polycrystals , 1990 .

[10]  D. Tabor A simple theory of static and dynamic hardness , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[12]  Franz-Josef Ulm,et al.  Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials , 2006 .

[13]  L. Keer,et al.  Evaluation of elastic modulus of materials by adhesive (no–slip) nano–indentation , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[15]  L. Keer,et al.  Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes , 2003 .

[16]  S. Suresh,et al.  Depth-sensing instrumented indentation with dual sharp indenters , 2003 .

[17]  Yuji Tanabe,et al.  Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles , 2001 .

[18]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[19]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[20]  H. Jennings Colloid model of C−S−H and implications to the problem of creep and shrinkage , 2004 .

[21]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[22]  Jean Salençon,et al.  Calcul à la rupture et analyse limite , 1983 .

[23]  K. Bathe Finite Element Procedures , 1995 .

[24]  Franz-Josef Ulm,et al.  The nanogranular nature of shale , 2006 .

[25]  R. Freund Review of A mathematical view of interior-point methods in convex optimization, by James Renegar, SIAM, Philadelphia, PA , 2004 .

[26]  Franz-Josef Ulm,et al.  Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties , 2004 .

[27]  L. Dormieux,et al.  Détermination du comportement macroscopique d'un milieu à fissures frottantes , 2003 .

[28]  John Lysmer,et al.  LIMIT ANALYSIS OF PLANE PROBLEMS IN SOIL MECHANICS , 1970 .

[29]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[30]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[31]  F. Ulm,et al.  On the use of nanoindentation for cementitious materials , 2003 .

[32]  Y. Abousleiman,et al.  Acoustic Measurements of the Anisotropy of Dynamic Elastic and Poromechanics Moduli under Three Stress/Strain Pathways , 2005 .

[33]  Pierre Suquet,et al.  Effective properties of nonlinear composites , 1997 .

[34]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[35]  Christian Hellmich,et al.  Drained and Undrained Poroelastic Properties of Healthy and Pathological Bone: A Poro-Micromechanical Investigation , 2005 .

[36]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[37]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[38]  Joseph Pastor,et al.  Limit analysis and Gurson's model , 2005 .

[39]  Neil J. A. Sloane,et al.  Kepler's conjecture confirmed , 1998, Nature.

[40]  Johann Michler,et al.  Determination of plastic properties of metals by instrumented indentation using different sharp indenters , 2003 .

[41]  K. Zeng,et al.  Material characterization based on dual indenters , 2005 .

[42]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[43]  Alain Molinari,et al.  Micromechanical approach to the behavior of poroelastic materials , 2002 .

[44]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[45]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[46]  Jean-François Barthélémy,et al.  Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire , 2003 .

[47]  J. Pastor,et al.  Finite element method and limit analysis theory for soil mechanics problems , 1980 .

[48]  E. Anderheggen,et al.  Finite element limit analysis using linear programming , 1972 .

[49]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[50]  Scott W. Sloan,et al.  A steepest edge active set algorithm for solving sparse linear programming problems , 1988 .

[51]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[52]  A. DiCarlo,et al.  Semi-inverse method for predicting stress–strain relationship from cone indentations , 2003 .

[53]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .