Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | L. Ho | H. Falcke | T. Lauer | K. Bouman | G. Desvignes | J. Carlstrom | D. James | P. Koch | L. Rezzolla | K. Menten | R. Neri | P. Ho | L. Blackburn | M. Wright | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Jongho Park | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | F. Schloerb | E. Fomalont | Zhi-qiang Shen | Jongsoo Kim | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | G. Bower | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | R. Lu | A. Broderick | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | J. Dexter | A. Chael | K. Asada | C. Brinkerink | G. Crew | M. Dexter | R. Gold | D. Macmahon | J. Zensus | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | Ziyan Zhu | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | L. Shao | A. Marscher | S. Jorstad | José L. Gómez | U. Pen | J. Mao | I. Bemmel | D. Bintley | D. Ward-Thompson | B. Jannuzi | A. Young | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | D. Broguière | T. Bronzwaer | Chi-kwan Chan | Yongjun Chen | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | M. D. Laurentis | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | Roberto García | O. Gentaz | B. Georgiev | C. Goddi | M. Gu | K. Hada | Lei Huang | S. Issaoun | M. Janssen | B. Jeter | Wu Jiang | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | Yan-Rong Li | Zhiyuan Li | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | Masanori Nakamura | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | G. Ortiz-León | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | N. Wex | R. Wharton | M. Wielgus | G. Wong | Qingwen Wu | Z. Younsi | F. Yuan | Ye-Fei Yuan | Shan-Shan Zhao | S. Dzib | A. Gómez-Ruiz | H. V. van Langevelde | J. Conway | Michael Kramer | F. Özel | R. Rao | Zhiqiang Shen | D. V. van Rossum | Jan Wagner | E. Barausse | C. Kramer | A. Jiménez-Rosales | D. Yoon | N. Marchili | R. Lico | M. Laurentis | A. Nathanail | G. Musoke | Z. Li 李 | E. Traianou | S. Sánchez | D. Broguiere | Y. Chen 陈 | M. Gu 顾 | L. Ho 何 | Lei 磊 Huang 黄 | Wu 悟 Jiang 江 | R. Lu 路 | J. Mao 毛 | Z. Shen 沈 | Q. Wu 吴 | Y. Yuan 袁 | M. Laurentis | J. Gómez | M. Nakamura | C. Goddi | G. Ortiz-Léon | Lijing Shao | J. Wagner | F. Yuan 袁 | J. Cordes | G. Bower | Y. Li 李 | L. Ho | R. García | M. Kramer | A. Raymond | L. Huang 黄 | D. MacMahon | Feng Yuan | Qingwen Wu | David Ball | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | Daniel R. van Rossum | Doosoo Yoon | Alejandra Jiménez-Rosales | D. Hughes | Des Small

[1]  Daniel C. M. Palumbo,et al.  THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope , 2020, The Astrophysical Journal.

[2]  G. Perrin,et al.  Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object , 2020, 2002.09226.

[3]  C. Hesp,et al.  Observational signatures of disc and jet misalignment in images of accreting black holes , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  T. Ensslin,et al.  The variable shadow of M87 , 2020 .

[5]  E. Quataert,et al.  The Effects of Tilt on the Images of Black Hole Accretion Flows , 2020, The Astrophysical Journal.

[6]  L. Blackburn,et al.  Closure Statistics in Interferometric Data , 2019, The Astrophysical Journal.

[7]  L. Rezzolla,et al.  General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations , 2019, The Astrophysical Journal Supplement Series.

[8]  J. Davelaar,et al.  Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement , 2019, Astronomy & Astrophysics.

[9]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[10]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[11]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[12]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[13]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[14]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[15]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[16]  L. Rezzolla,et al.  Using evolutionary algorithms to model relativistic jets , 2019, Astronomy & Astrophysics.

[17]  Roger Cappallo,et al.  EHT-HOPS Pipeline for Millimeter VLBI Data Reduction , 2019, The Astrophysical Journal.

[18]  Lindy Blackburn,et al.  rPICARD: A CASA-based calibration pipeline for VLBI data , 2019, Astronomy & Astrophysics.

[19]  L. Blackburn,et al.  Calibration of ALMA as a Phased Array. ALMA Observations During the 2017 VLBI Campaign , 2019, Publications of the Astronomical Society of the Pacific.

[20]  Alan E. E. Rogers,et al.  Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A* , 2018, 1805.09223.

[21]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[22]  R. Narayan,et al.  The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A* , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[24]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[25]  F. Aharonian,et al.  Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra , 2017, 1712.06390.

[26]  C. Gammie,et al.  IPOLE - semi-analytic scheme for relativistic polarized radiative transport , 2017, 1712.03057.

[27]  W. Alef,et al.  The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths , 2017, 1711.06770.

[28]  R. Narayan,et al.  Evolving non-thermal electrons in simulations of black hole accretion , 2017, 1704.05092.

[29]  R. Narayan,et al.  Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity , 2016, 1605.03184.

[30]  V. Fish,et al.  Reconstruction of Static Black Hole Images Using Simple Geometric Forms , 2016, 1609.00055.

[31]  K. Bouman,et al.  HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.

[32]  Kazunori Akiyama,et al.  MODELING SEVEN YEARS OF EVENT HORIZON TELESCOPE OBSERVATIONS WITH RADIATIVELY INEFFICIENT ACCRETION FLOW MODELS , 2016, 1602.07701.

[33]  Alan E. E. Rogers,et al.  Persistent Asymmetric Structure of Sagittarius A* on Event Horizon Scales , 2016 .

[34]  D. Psaltis,et al.  BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS , 2016, 1602.00692.

[35]  P. Ho,et al.  Resolved magnetic-field structure and variability near the event horizon of Sagittarius A* , 2015, Science.

[36]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[37]  M. Gurwell,et al.  A BLACK HOLE MASS-VARIABILITY TIMESCALE CORRELATION AT SUBMILLIMETER WAVELENGTHS , 2015, 1508.06603.

[38]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[39]  R. Narayan,et al.  FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING , 2015, 1505.01500.

[40]  Kazunori Akiyama,et al.  Super-resolution imaging with radio interferometry using sparse modeling , 2014, 1407.2422.

[41]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[42]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[43]  Ayman Bin Kamruddin,et al.  A geometric crescent model for black hole images , 2013, 1306.3226.

[44]  M. Wright,et al.  FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY , 2013, 1305.3359.

[45]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[46]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[47]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[48]  The Galactic Center Weather Forecast , 2012, 1204.1371.

[49]  S. Kaufmann,et al.  THE 2010 VERY HIGH ENERGY γ-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87 , 2011, 1111.5341.

[50]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[51]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[52]  Peter Melchior,et al.  Dos and don'ts of reduced chi-squared , 2010, 1012.3754.

[53]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[54]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[55]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[56]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[57]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[58]  R. Narayan,et al.  Magnetically Arrested Disk : an Energetically Efficient Accretion Flow , 2003, astro-ph/0305029.

[59]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[60]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[61]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[62]  Alan E. E. Rogers,et al.  Fringe Detection Methods for Very Long Baseline Arrays , 1995 .

[63]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[64]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[65]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[66]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[67]  P. H. Cittert,et al.  Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene , 1934 .