Endomorphism monoids of chained graphs
暂无分享,去创建一个
[1] Pavol Hell,et al. Graphs and k-Societies , 1970, Canadian Mathematical Bulletin.
[2] J. Sichler,et al. Testing Categories and Strong Universality , 1973, Canadian Journal of Mathematics.
[3] E. Mendelsohn,et al. The Category of Graphs with a Given Subgraph-with Applications to Topology and Algebra , 1969, Canadian Journal of Mathematics.
[4] Joachim Lambek,et al. How comprehensive is the category of semigroups , 1969 .
[5] Jaroslav Nesetril,et al. Quotients of rigid graphs , 1981, J. Comb. Theory, Ser. B.
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] Václav Koubek,et al. Universal varieties of $(0,1)$-lattices , 1990 .
[8] Václav Koubek,et al. On Full and Faithful Kan Extensions , 1998, Appl. Categorical Struct..
[9] Z. Hedrlín,et al. Any boundable binding category contains a proper class of mutually disjoint copies of itself , 1971 .
[10] Hilary A. Priestley,et al. De Morgan algebras are universal , 1987, Discret. Math..
[11] Z. Hedrlín,et al. Relations (graphs) with given infinite semigroups , 1964 .
[12] Václav Koubek,et al. Strongly alg-universal semigroup varieties , 1999 .
[13] M. E. Adams,et al. Endomorphisms of direct unions of bounded lattices , 1981 .
[14] E. Fried,et al. Homomorphisms of commutative rings with unit element. , 1973 .
[15] Václav Koubek,et al. Universal varieties of distributive double p-algebras , 1985 .
[16] A. Pultr,et al. Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .