Endomorphism monoids of chained graphs

Abstract For any complete chain I whose distinct elements are separated by cover pairs, and for every family {M i | i∈I} of monoids, we construct a family of graphs { G i | i∈I} such that G i is a proper induced subgraph of G j for all i,j∈I with i , G i =⋂ { G j | j∈I, i whenever i= inf { j∈I | j>i} in I , G i =⋃ { G j | j∈I, j whenever i= sup { j∈I | j in I , the endomorphism monoid of G i is isomorphic to M i for all i∈I . An analogous result is proved also for quotient graphs, and both results are applied to certain varieties of finitary algebras.

[1]  Pavol Hell,et al.  Graphs and k-Societies , 1970, Canadian Mathematical Bulletin.

[2]  J. Sichler,et al.  Testing Categories and Strong Universality , 1973, Canadian Journal of Mathematics.

[3]  E. Mendelsohn,et al.  The Category of Graphs with a Given Subgraph-with Applications to Topology and Algebra , 1969, Canadian Journal of Mathematics.

[4]  Joachim Lambek,et al.  How comprehensive is the category of semigroups , 1969 .

[5]  Jaroslav Nesetril,et al.  Quotients of rigid graphs , 1981, J. Comb. Theory, Ser. B.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Václav Koubek,et al.  Universal varieties of $(0,1)$-lattices , 1990 .

[8]  Václav Koubek,et al.  On Full and Faithful Kan Extensions , 1998, Appl. Categorical Struct..

[9]  Z. Hedrlín,et al.  Any boundable binding category contains a proper class of mutually disjoint copies of itself , 1971 .

[10]  Hilary A. Priestley,et al.  De Morgan algebras are universal , 1987, Discret. Math..

[11]  Z. Hedrlín,et al.  Relations (graphs) with given infinite semigroups , 1964 .

[12]  Václav Koubek,et al.  Strongly alg-universal semigroup varieties , 1999 .

[13]  M. E. Adams,et al.  Endomorphisms of direct unions of bounded lattices , 1981 .

[14]  E. Fried,et al.  Homomorphisms of commutative rings with unit element. , 1973 .

[15]  Václav Koubek,et al.  Universal varieties of distributive double p-algebras , 1985 .

[16]  A. Pultr,et al.  Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .