Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions

Abstract A numerical technique based on the spectral method is presented for the solution of nonlinear Volterra–Fredholm–Hammerstein integral equations. This method is a combination of collocation method and radial basis functions (RBFs) with the differentiation process (DRBF), using zeros of the shifted Legendre polynomial as the collocation points. Different applications of RBFs are used for this purpose. The integral involved in the formulation of the problems are approximated based on Legendre–Gauss–Lobatto integration rule. The results of numerical experiments are compared with the analytical solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme.

[1]  Mehdi Dehghan,et al.  Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets , 2005 .

[2]  Siraj-ul-Islam,et al.  A meshfree method for the numerical solution of the RLW equation , 2009 .

[3]  Mohsen Razzaghi,et al.  Solution of nonlinear Volterra-Hammerstein integral equations via single-term Walsh series method , 2005 .

[4]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[5]  Khosrow Maleknejad,et al.  Numerical solution of Hammerstein integral equations by using combination of spline-collocation method and Lagrange interpolation , 2007, Appl. Math. Comput..

[6]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[7]  Mehdi Dehghan,et al.  Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions , 2006, Math. Comput. Model..

[8]  E. A. Galperin,et al.  Mathematical programming methods in the numerical solution of Volterra integral and integro-differential equations with weakly-singular kernel , 1997 .

[9]  Farideh Ghoreishi,et al.  Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations , 2009, Numerical Algorithms.

[10]  Wu Zong-min,et al.  Radial Basis Function Scattered Data Interpolation and the Meshless Method of Numerical Solution of PDEs , 2002 .

[11]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[12]  Mohsen Rabbani,et al.  A modification for solving Fredholm-Hammerstein integral equation by using wavelet basis , 2009, Kybernetes.

[13]  Nam Mai-Duy,et al.  Numerical solution of differential equations using multiquadric radial basis function networks , 2001, Neural Networks.

[14]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[15]  M. Hadizadeh,et al.  A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type , 2004, Int. J. Comput. Math..

[16]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[17]  Yadollah Ordokhani,et al.  A Rationalized Haar Functions Method for Nonlinear Fredholm-hammerstein Integral Equations , 2002, Int. J. Comput. Math..

[18]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[19]  Mohsen Razzaghi,et al.  Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations , 2005, Math. Comput. Simul..

[20]  Gamal N. Elnagar,et al.  Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .

[21]  Esmail Babolian,et al.  A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type , 2007, Appl. Math. Comput..

[22]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[23]  Mehdi Dehghan,et al.  A method for solving partial differential equations via radial basis functions: Application to the heat equation , 2010 .

[24]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[25]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Fredholm integral equations by positive definite functions , 2007, Appl. Math. Comput..

[26]  Gamal N. Elnagar,et al.  Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .

[27]  Necdet Bildik,et al.  MODIFIED DECOMPOSITION METHOD FOR NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS , 2007 .

[28]  Hermann Brunner,et al.  Implicitly linear collocation methods for nonlinear Volterra equations , 1992 .

[29]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[30]  E. J. Kansa,et al.  Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations , 2022 .

[31]  M. A. Abdou,et al.  On the numerical solutions of Fredholm-Volterra integral equation , 2003, Appl. Math. Comput..

[32]  Saeed Kazem,et al.  Radial basis functions method for solving of a non-local boundary value problem with Neumann’s boundary conditions , 2012 .

[33]  Saeed Kazem,et al.  A New Method for Solving Steady Flow of a Third-Grade Fluid in a Porous Half Space Based on Radial Basis Functions , 2011 .

[34]  Yadollah Ordokhani,et al.  Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions , 2006, Appl. Math. Comput..

[35]  Scott A. Sarra,et al.  A Numerical Study of Generalized Multiquadric Ra dial Basis Function Interpolation , 2009 .

[36]  José Antonio Ezquerro,et al.  Fourth-order iterations for solving Hammerstein integral equations , 2009 .

[37]  Khosrow Maleknejad,et al.  Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations , 2012 .

[38]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[39]  Mohsen Razzaghi,et al.  A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations , 2011 .

[40]  Khosrow Maleknejad,et al.  The collocation method for Hammerstein equations by Daubechies wavelets , 2006, Appl. Math. Comput..

[41]  Nam Mai-Duy,et al.  Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks , 2001 .

[42]  Mehdi Dehghan,et al.  Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method , 2010 .

[43]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[44]  E. A. Galperin,et al.  The solution of infinitely ill-conditioned weakly-singular problems , 2000 .

[45]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[46]  Jalil Rashidinia,et al.  New approach for numerical solution of Hammerstein integral equations , 2007, Appl. Math. Comput..

[47]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[48]  B. Baxter,et al.  The Interpolation Theory of Radial Basis Functions , 2010, 1006.2443.

[49]  Mehdi Dehghan,et al.  Use of radial basis functions for solving the second‐order parabolic equation with nonlocal boundary conditions , 2008 .

[50]  Khosrow Maleknejad,et al.  Convergence of approximate solution of nonlinear Fredholm–Hammerstein integral equations , 2010 .

[51]  Saeed Kazem,et al.  A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation , 2011 .

[52]  Nam Mai-Duy,et al.  Solving high order ordinary differential equations with radial basis function networks , 2005 .

[53]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[54]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[55]  E. Kansa,et al.  Application of Global Optimization and Radial Basis Functions to Numerical Solutions of Weakly Singular Volterra Integral Equations , 2002 .

[56]  Hermann Brunner,et al.  Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution , 1997 .

[57]  Saeed Kazem,et al.  Radial basis functions methods for solving Fokker–Planck equation , 2012 .

[58]  H. Ding,et al.  Solution of partial differential equations by a global radial basis function-based differential quadrature method , 2004 .

[59]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[60]  Han Guo-qiang Asymptotic error expansion of a collocation-type method for Volterra-Hammerstein integral equations , 1993 .

[61]  Siraj-ul-Islam,et al.  Application of meshfree collocation method to a class of nonlinear partial differential equations. , 2009 .

[62]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[63]  Saeed Kazem,et al.  Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium , 2010, ArXiv.

[64]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[65]  Mehdi Dehghan,et al.  A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions , 2009, Numerical Algorithms.

[66]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[67]  G. F. Roach,et al.  Adomian's method for Hammerstein integral equations arising from chemical reactor theory , 2001, Appl. Math. Comput..

[68]  M. Hadizadeh,et al.  Numerical solvability of a class of Volterra-Hammerstein integral equations with noncompact kernels , 2005 .

[69]  Fuyi Li,et al.  Existence of solutions to nonlinear Hammerstein integral equations and applications , 2006 .

[70]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[71]  E. A. Galperin,et al.  Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations , 2000 .