Graphs with χ=Δ Have Big Cliques

Brooks' theorem implies that if a graph has $\Delta\ge 3$ and $\chi > \Delta$, then $\omega=\Delta+1$. Borodin and Kostochka conjectured that if $\Delta\ge 9$ and $\chi\ge \Delta$, then $\omega\ge \Delta$. We show that if $\Delta\ge 13$ and $\chi\ge \Delta$, then $\omega \ge \Delta-3$. For a graph $G$, let ${\mathcal{H}(G)}$ denote the subgraph of $G$ induced by vertices of degree $\Delta$. We also show that if $\chi\ge \Delta$, then $\omega\ge \Delta$ or $\omega({\mathcal{H}(G)})\ge \Delta-5$.

[1]  Hal A. Kierstead,et al.  On the choosability of complete multipartite graphs with part size three , 2000, Discret. Math..

[2]  Alexandr V. Kostochka,et al.  Degree, density and chromatic number of graphs , 1980 .

[3]  Paul A. Catlin,et al.  Another bound on the chromatic number of a graph , 1978, Discret. Math..

[4]  Daniel W. Cranston,et al.  A Note on Coloring Vertex-transitive Graphs , 2014, Electron. J. Comb..

[5]  Mario Szegedy,et al.  A Sharper Local Lemma with Improved Applications , 2012, APPROX-RANDOM.

[6]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[7]  Bruce A. Reed,et al.  A Strengthening of Brooks' Theorem , 1999, J. Comb. Theory B.

[8]  Noga Alon,et al.  Probabilistic methods in coloring and decomposition problems , 1994, Discret. Math..

[9]  László Lovász On decomposition of graphs , 1966 .

[10]  D. West Introduction to Graph Theory , 1995 .

[11]  Landon Rabern,et al.  Conjectures equivalent to the Borodin-Kostochka Conjecture that are a priori weaker , 2012 .

[12]  Daniel W. Cranston,et al.  Coloring claw-free graphs with − 1 colors , 2012 .

[13]  Katherine Edwards,et al.  A Note on Hitting Maximum and Maximal Cliques With a Stable Set , 2011, J. Graph Theory.

[14]  Alexandr V. Kostochka,et al.  Graphs with chromatic number close to maximum degree , 2012, Discret. Math..

[15]  Alexandr V. Kostochka,et al.  Variable degeneracy: extensions of Brooks' and Gallai's theorems , 2000, Discret. Math..

[16]  Landon Rabern Partitioning and coloring graphs with degree constraints , 2013, Discret. Math..

[17]  Benny Sudakov,et al.  List Colouring When The Chromatic Number Is Close To the Order Of The Graph , 2004, Comb..

[18]  L. Lovász Three short proofs in graph theory , 1975 .

[19]  Landon Rabern,et al.  Δ-Critical graphs with small high vertex cliques , 2012 .

[20]  Landon Rabern,et al.  Coloring Graphs with Dense Neighborhoods , 2012, J. Graph Theory.

[21]  Andras Hajnal,et al.  A Theorem on k-Saturated Graphs , 1965, Canadian Journal of Mathematics.

[22]  Penny Haxell,et al.  A Note on Vertex List Colouring , 2001, Combinatorics, Probability and Computing.

[23]  Landon Rabern,et al.  On hitting all maximum cliques with an independent set , 2009, J. Graph Theory.

[24]  Bruce A. Reed,et al.  A Short Proof That χ Can be Bounded ε Away from Δ + 1 toward ω , 2016, J. Graph Theory.

[25]  Alexandr V. Kostochka,et al.  On an upper bound of a graph's chromatic number, depending on the graph's degree and density , 1977, J. Comb. Theory B.

[26]  Alexandr V. Kostochka,et al.  Ore-type versions of Brooks' theorem , 2009, J. Comb. Theory B.

[27]  David R. Wood,et al.  Brooks' Vertex-Colouring Theorem in Linear Time , 2014, ArXiv.

[28]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[29]  Andrew D. King Hitting all maximum cliques with a stable set using lopsided independent transversals , 2009, J. Graph Theory.