A Unified Approach to Generalized Stirling Numbers

It is shown that various well-known generalizations of Stirling numbers of the first and second kinds can be unified by starting with transformations between generalized factorials involving three arbitrary parameters. Previous extensions of Stirling numbers due to Riordan, Carlitz, Howard, Charalambides-Koutras, Gould-Hopper, Tsylova, and others are included as particular cases of our unified treatment. We have also investigated some basic properties related to our general pattern.

[1]  J. Riordan Moment Recurrence Relations for Binomial, Poisson and Hypergeometric Frequency Distributions , 1937 .

[2]  L. Moser,et al.  Asymptotic Development of the Stirling Numbers of the First Kind , 1958 .

[3]  H. W. Gould,et al.  Operational formulas connected with two generalizations of Hermite polynomials , 1962 .

[4]  G. Rota The Number of Partitions of a Set , 1964 .

[5]  Gian-Carlo Rota,et al.  On the foundations of combinatorial theory III , 1969 .

[6]  Bernard Harris,et al.  Graph theory and its applications , 1970 .

[7]  R. Stanley,et al.  On the foundations of combinatorial theory. VI. The idea of generating function , 1972 .

[8]  J. L. Freeman Sixth Berkeley Symposium on Mathematical Statistics and Probability , 1973 .

[9]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[10]  Gian-Carlo Rota,et al.  From sets to functions: Three elementary examples , 1981, Discret. Math..

[11]  F. T. Howard A theorem relating potential and bell polynomials , 1982, Discret. Math..

[12]  Markos V. Koutras,et al.  Non-central stirling numbers and some applications , 1982, Discret. Math..

[13]  Markos V. Koutras,et al.  On the differences of the generalized factorials at an arbitrary point and their combinatorial applications , 1983, Discret. Math..

[14]  Andrei Z. Broder,et al.  The r-Stirling numbers , 1984, Discret. Math..

[15]  F. T. Howard Degenerate weighted Stirling numbers , 1985, Discret. Math..

[16]  Mizan Rahman,et al.  An Integral of Products of Ultraspherical Functions and a q‐Extension , 1986 .

[17]  C. Charalambides,et al.  Review of the stirling numbers, their generalizations and Statistical Applications , 1988 .

[18]  Taylor expansions of analytic functions related to (1 + z)x − 1 , 1988 .

[19]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[20]  C. Wagner Surjections, Differences, and Binomial Lattices , 1994 .

[21]  Fonctions génératrices pour une classe d'équations aux différences partielles , 1995 .

[22]  L. C. Hsu,et al.  A unified approach to a class of stirling-type pairs , 1997 .

[23]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .