A sparse regular approximation lemma
暂无分享,去创建一个
[1] B. Szegedy,et al. Szemerédi’s Lemma for the Analyst , 2007 .
[2] David Conlon,et al. Graph removal lemmas , 2012, Surveys in Combinatorics.
[3] V. Rödl,et al. Extremal problems on set systems , 2002 .
[4] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[5] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[6] David Conlon,et al. Bounds for graph regularity and removal lemmas , 2011, ArXiv.
[7] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[8] V. Rödl,et al. Regularity Lemmas for Graphs , 2010 .
[9] Jozef Skokan,et al. Applications of the regularity lemma for uniform hypergraphs , 2006 .
[10] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[11] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[12] Alex D. Scott,et al. Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.
[13] Vojtech Rödl,et al. A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..
[14] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[15] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[16] Asaf Shapira,et al. A short proof of Gowers’ lower bound for the regularity lemma , 2016, Comb..
[17] Jacob Fox,et al. A new proof of the graph removal lemma , 2010, ArXiv.
[18] Vojtech Rödl,et al. Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.
[19] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[20] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[21] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[22] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[23] Terence Tao. Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..
[24] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .