Synthesis and chromatographic properties of a novel chiral stationary phase derived from heptakis(6-azido-6-deoxy-2,3-di-O-phenylcarbamoylated)-beta-cyclodextrin immobilized onto amino-functionalized silica gel via multiple urea linkages.

[1]  Y. Gololobov,et al.  Recent Advances in the Staudinger Reaction , 1992 .

[2]  T. Shono,et al.  Chemically bonded cyclodextrin stationary phases for liquid chromatographic separation of aromatic compounds , 1983 .

[3]  Y. Okamoto,et al.  Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases , 1994 .

[4]  J. Kovács,et al.  Synthesis of sugar ureas via phosphinimines , 1995 .

[5]  J. Defaye,et al.  Selective Halogenation at Primary Positions of Cyclomaltooligosaccharides and a Synthesis of Per‐3,6‐anhydro Cyclomaltooligosaccharides , 1991 .

[6]  William H. Pirkle,et al.  Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers , 1989 .

[7]  D. Armstrong,et al.  Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers , 1990 .

[8]  D. Armstrong,et al.  Effect of the configuration of the substituents of derivatized β-cyclodextrin bonded phases on enantioselectivity in normal-phase liquid chromatography , 1991 .

[9]  D. Armstrong,et al.  Liquid chromatographic separation of anomeric forms of saccharides with cyclodextrin bonded phases. , 1989, Chirality.

[10]  J. Kovács,et al.  Unprotected sugar phosphinimines: A facile route to cyclic carbamates of amino sugars , 1985 .

[11]  G. Félix,et al.  Chiral packing materials for high-performance liquid chromatographic resolution of enantiomers based on substituted branched polysaccharides coated on silica gel. , 1993, Journal of chromatography.

[12]  G. Félix,et al.  Chromatographic properties in normal-mode HPLC of chiral stationary phases based on substituted β-cyclodextrins , 1997 .

[13]  C. Ching,et al.  Preparative resolution of praziquantel enantiomers by simulated counter-current chromatography , 1993 .

[14]  A. Messmer,et al.  Acetylzucker-phosphinimine und -carbodiimide , 1964 .

[15]  G. Félix,et al.  Synthesis and chromatographic properties of HPLC chiral stationary phases based upon β-cyclodextrins , 1996 .

[16]  J. Lehn,et al.  Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β-cyclodextrins , 1978 .

[17]  S. Ng,et al.  A facile route into 6A-mono-ω-alkenylcarbamido-6A-deoxy-perfunctionalised cyclodextrin: key intermediate for further reactive functionalisations , 1999 .

[18]  Y. Kaida,et al.  Preparation and chromatographic evaluation of 3,5-dimethylphenyl carbamoylated β-cyclodextrin stationary phases for normal-phase high-performance liquid chromatographic separation of enantiomers , 1993 .

[19]  C. Ching,et al.  A facile immobilization approach for perfunctionalised cyclodextrin onto silica via the Staudinger reaction , 1999 .

[20]  John D. Green,et al.  Chromatographic Enantioseparation: Methods and Applications , 1988 .

[21]  R. Riopelle,et al.  Efficient Perfacial Derivatization of Cyclodextrins at the Primary Face , 1996 .

[22]  D. Armstrong,et al.  (R)- and (S)-Naphthylethylcarbamate-substituted β-cyclo-dextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers , 1991 .

[23]  Y. Okamoto,et al.  Evaluation of 3,5-Dimethylphenyl Carbamoylated α-, β-, and γ-Cyclodextrins as Chiral Stationary Phases for HPLC , 1993 .

[24]  D. Armstrong,et al.  Empirical procedure that uses molecular structure to predict enantioselectivity of chiral stationary phases. , 1992, Analytical chemistry.

[25]  T. Ando,et al.  Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography , 1983 .

[26]  C. Welch Evolution of chiral stationary phase design in the Pirkle laboratories , 1994 .

[27]  I. Tabushi,et al.  Cyclodextrin flexibly capped with metal ion , 1977 .