An accurate finite element scheme with moving meshes for computing 3D‐axisymmetric interface flows

An accurate finite element scheme for computing 3D-axisymmetric incompressible free surface and interface flows is proposed. It is based on the arbitrary Lagrangian Eulerian (ALE) approach using free surface/interface-resolved moving meshes. Key features like the surface force, consisting of surface tension and the local curvature, and jumps in the density and viscosity over different fluid phases are precisely incorporated in the finite element formulation. The local curvature is approximated by using the Laplace–Beltrami operator technique combined with a boundary approximation by isoparametric finite elements. A new approach is used to derive the 3D-axisymmetric form from the variational form in 3D-Cartesian coordinates. Several test examples show the high accuracy and the robustness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[2]  L. Tobiska,et al.  On spurious velocities in incompressible flow problems with interfaces , 2007 .

[3]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[4]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[5]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[6]  Anna-Karin Tornberg,et al.  Interface tracking methods with application to multiphase flows , 2000 .

[7]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[8]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[9]  A. Reusken,et al.  A finite element based level set method for two-phase incompressible flows , 2006 .

[10]  Gunar Matthies,et al.  Non-Nested Multi-Level Solvers for Finite Element Discretisations of Mixed Problems , 2002, Computing.

[11]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[12]  Sashikumaar Ganesan,et al.  COMPUTATIONS OF FLOWS WITH INTERFACES USING ARBITRARY LAGRANGIAN EULERIAN METHOD , 2006 .

[13]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  Gunar Matthies,et al.  The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.

[16]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[17]  Rolf Rannacher Incompressible Viscous Flows , 2004 .

[18]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[19]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[20]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[21]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[22]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[23]  Vitoriano Ruas Mixed finite element methods with discontinuous pressures for the axisymmetric Stokes problem , 2003 .

[24]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[25]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[26]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[27]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[28]  Ng Niels Deen,et al.  Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method , 2005 .

[29]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[30]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[31]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[32]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[33]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[34]  P. Nithiarasu An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic‐based split (CBS) scheme , 2005 .

[35]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[36]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .