Corneal endothelial transplantation from bench to bedside: A review of animal models and their translational value for therapeutic development.

[1]  Y. Savir,et al.  Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. , 2021, Cell stem cell.

[2]  M. Haniffa,et al.  A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells , 2021, The ocular surface.

[3]  F. Price,et al.  Randomized, double-masked, pilot study of netarsudil 0.02% ophthalmic solution for treatment of corneal edema in Fuchs dystrophy. , 2021, American journal of ophthalmology.

[4]  C. Rapuano,et al.  Rho kinase (ROCK) inhibitors in the management of corneal endothelial disease , 2021, Current opinion in ophthalmology.

[5]  Yumei Li,et al.  Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea. , 2020, The ocular surface.

[6]  Gregory A. Schmidt,et al.  Potential functional restoration of corneal endothelial cells in Fuchs endothelial corneal dystrophy by ROCK inhibitor (ripasudil). , 2020, American journal of ophthalmology.

[7]  Sanjay V. Patel,et al.  Cases With Long-Term High Corneal Endothelial Cell Density Maintained After Corneal Transplantation. , 2020, Cornea.

[8]  Yanning Yang,et al.  Paxillin promotes the migration and angiogenesis of HUVECs and affects angiogenesis in the mouse cornea , 2020, Experimental and therapeutic medicine.

[9]  Lester J. Smith,et al.  Decellularization methods for developing porcine corneal xenografts and future perspectives , 2019, Xenotransplantation.

[10]  G. Feng,et al.  Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing , 2019, Scientific Reports.

[11]  R. Dalal,et al.  Magnetic Human Corneal Endothelial Cell Transplant: Delivery, Retention, and Short-Term Efficacy , 2019, Investigative ophthalmology & visual science.

[12]  S. Narumiya,et al.  Crystal structure of the endogenous agonist-bound prostanoid receptor EP3 , 2018, Nature Chemical Biology.

[13]  K. Tsubota,et al.  A Rabbit Corneal Endothelial Dysfunction Model Using Endothelial-Mesenchymal Transformed Cells , 2018, Scientific Reports.

[14]  A. Menon,et al.  Aquaporin 5 promotes corneal wound healing , 2018, Experimental eye research.

[15]  P. Morel,et al.  Xenotransplantation: back to the future? , 2018, Transplant international : official journal of the European Society for Organ Transplantation.

[16]  N. Koizumi,et al.  Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy , 2018, The New England journal of medicine.

[17]  J. Goldberg,et al.  A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function , 2018, Investigative ophthalmology & visual science.

[18]  S. Ní Dhubhghaill,et al.  Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering , 2018, Journal of tissue engineering and regenerative medicine.

[19]  A. Kamali,et al.  Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. , 2018, International journal of biological macromolecules.

[20]  J. Mehta,et al.  Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy , 2017, Scientific Reports.

[21]  Á. Meana,et al.  Silk Fibroin Films for Corneal Endothelial Regeneration: Transplant in a Rabbit Descemet Membrane Endothelial Keratoplasty. , 2017, Investigative ophthalmology & visual science.

[22]  A. Kelber,et al.  Thresholds and noise limitations of colour vision in dim light , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  H. Okano,et al.  Neuroscience Research Using Non-human Primate Models and Genome Editing , 2017 .

[24]  T. Shiina,et al.  Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction , 2016, Scientific Reports.

[25]  M. Ahearne,et al.  Dextran Preserves Native Corneal Structure During Decellularization. , 2016, Tissue engineering. Part C, Methods.

[26]  A. Hopkinson,et al.  Corneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation? , 2015, Current eye research.

[27]  J. Pang,et al.  Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing , 2015, PloS one.

[28]  Y. Shao,et al.  A novel method in preparation of acellularporcine corneal stroma tissue for lamellar keratoplasty. , 2015, American journal of translational research.

[29]  J. McEwan,et al.  Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease , 2015, Orphanet Journal of Rare Diseases.

[30]  K. Kador,et al.  Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[31]  M-C Zhang,et al.  Lamellar Keratoplasty Treatment of Fungal Corneal Ulcers With Acellular Porcine Corneal Stroma , 2015, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[32]  V. Carriel,et al.  Effects of Detergent-Based Protocols on Decellularization of Corneas With Sclerocorneal Limbus. Evaluation of Regional Differences. , 2015, Translational vision science & technology.

[33]  Xiaoling Guo,et al.  The effects of ROCK inhibitor Y-27632 on injectable spheroids of bovine corneal endothelial cells. , 2015, Cellular reprogramming.

[34]  Haifeng Zhao,et al.  Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium , 2014, PloS one.

[35]  D. Cooper,et al.  A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. , 2014, International journal of ophthalmology.

[36]  S. Soker,et al.  Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. , 2014, Biomaterials.

[37]  Alexandra Z. Crawford,et al.  A brief history of corneal transplantation: From ancient to modern , 2013, Oman journal of ophthalmology.

[38]  Yan Jin,et al.  Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. , 2013, Biomaterials.

[39]  Lixin Xie,et al.  ROCK inhibitor Y-27632 increases the cloning efficiency of limbal stem/progenitor cells by improving their adherence and ROS-scavenging capacity. , 2013, Tissue engineering. Part C, Methods.

[40]  Anton Blencowe,et al.  Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. , 2013, Acta biomaterialia.

[41]  Li-mei Chen,et al.  Characterization of Cross-Linked Porous Gelatin Carriers and Their Interaction with Corneal Endothelium: Biopolymer Concentration Effect , 2013, PloS one.

[42]  N. Koizumi,et al.  ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. , 2012, The American journal of pathology.

[43]  Peter Szurman,et al.  Decellularization of porcine corneas and repopulation with human corneal cells for tissue‐engineered xenografts , 2012, Acta ophthalmologica.

[44]  S. Proulx,et al.  Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. , 2012, Experimental eye research.

[45]  Y. Shao,et al.  Evaluation of novel decellularizing corneal stroma for cornea tissue engineering applications. , 2012, International journal of ophthalmology.

[46]  M. Carrier,et al.  Comparison of the pig and feline models for full thickness corneal transplantation. , 2011, Veterinary ophthalmology.

[47]  N. Koizumi,et al.  The New Therapeutic Concept of Using a Rho Kinase Inhibitor for the Treatment of Corneal Endothelial Dysfunction , 2011, Cornea.

[48]  Kohji Nishida,et al.  A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. , 2011, Tissue engineering. Part A.

[49]  Xinyi Wu,et al.  Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. , 2011, Artificial organs.

[50]  A. Verkman,et al.  Aquaporins at a glance , 2011, Journal of Cell Science.

[51]  Stephen F Badylak,et al.  An overview of tissue and whole organ decellularization processes. , 2011, Biomaterials.

[52]  A. Ionescu,et al.  Generation of bioengineered corneas with decellularized xenografts and human keratocytes. , 2011, Investigative ophthalmology & visual science.

[53]  J. Ge,et al.  Development and Characterization of Acellular Porcine Corneal Matrix Using Sodium Dodecylsulfate , 2011, Cornea.

[54]  D. Boehringer,et al.  Regeneration of corneal endothelium following complete endothelial cell loss in rat keratoplasty , 2010, Molecular vision.

[55]  H. Lee,et al.  Corneal cell viability and structure after transcorneal freezing–thawing in the human cornea , 2010, Clinical ophthalmology.

[56]  Seiichi Funamoto,et al.  The use of high-hydrostatic pressure treatment to decellularize blood vessels. , 2010, Biomaterials.

[57]  Seiichi Funamoto,et al.  Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. , 2010, Biomaterials.

[58]  J. Lai,et al.  Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. , 2010, Biomacromolecules.

[59]  Hosik Hwang,et al.  Endothelial damage of a donor cornea depending on the donor insertion method during Descemet-stripping automated endothelial keratoplasty in porcine eyes , 2009, Japanese Journal of Ophthalmology.

[60]  Seiichi Funamoto,et al.  In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas , 2009, Molecular vision.

[61]  Tatsuya Mimura,et al.  Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. , 2009, Archives of ophthalmology.

[62]  Tadashi Isa,et al.  Japanese macaques as laboratory animals. , 2009, Experimental animals.

[63]  N. Koizumi,et al.  Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. , 2009, Investigative ophthalmology & visual science.

[64]  A. Verkman,et al.  Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. , 2009, Experimental eye research.

[65]  J. Ge,et al.  The use of phospholipase A(2) to prepare acellular porcine corneal stroma as a tissue engineering scaffold. , 2009, Biomaterials.

[66]  N. Mizuki,et al.  Immunologic mechanisms of corneal allografts reconstituted from cultured allogeneic endothelial cells in an immune-privileged site. , 2009, Investigative ophthalmology & visual science.

[67]  L. Germain,et al.  Transplantation of a tissue-engineered corneal endothelium reconstructed on a devitalized carrier in the feline model. , 2009, Investigative ophthalmology & visual science.

[68]  Sanjay V. Patel,et al.  Human corneal endothelial cell transplantation in a human ex vivo model. , 2009, Investigative ophthalmology & visual science.

[69]  H. Lee,et al.  Processing porcine cornea for biomedical applications. , 2009, Tissue engineering. Part C, Methods.

[70]  L. Germain,et al.  Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier. , 2009, Tissue engineering. Part A.

[71]  Y. Barrandon,et al.  Oligopotent stem cells are distributed throughout the mammalian ocular surface , 2008, Nature.

[72]  S. Amano,et al.  Decellularizing corneal stroma using N2 gas , 2008, Molecular vision.

[73]  Kiyoshi Saito,et al.  Differential effects of two ROCK inhibitors, Fasudil and Y-27632, on optic nerve regeneration in adult cats , 2008, Brain Research.

[74]  Y. Hui,et al.  Lamellar keratoplasty with a graft of lyophilized acellular porcine corneal stroma in the rabbit. , 2008, Veterinary ophthalmology.

[75]  Noriko Koizumi,et al.  Cultivated corneal endothelial cell sheet transplantation in a primate model. , 2007, Investigative ophthalmology & visual science.

[76]  Matthias Stuber,et al.  Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells , 2007, Nature Medicine.

[77]  G. Hsiue,et al.  Tissue-Engineered Human Corneal Endothelial Cell Sheet Transplantation in a Rabbit Model Using Functional Biomaterials , 2007, Transplantation.

[78]  T. Mimura,et al.  Necessary Prone Position Time for Human Corneal Endothelial Precursor Transplantation in a Rabbit Endothelial Deficiency Model , 2007, Current eye research.

[79]  J. W. Thomas An Experiment in Keratoplasty , 1930, Proceedings of the Royal Society of Medicine.

[80]  Junko Hori,et al.  Immunogenicity and immune privilege of corneal allografts. , 2007, Chemical immunology and allergy.

[81]  A. Verkman,et al.  Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. , 2006, Investigative ophthalmology & visual science.

[82]  D. Larkin,et al.  The first successful full-thickness corneal transplant: a commentary on Eduard Zirm’s landmark paper of 1906 , 2006, British Journal of Ophthalmology.

[83]  M. Araie,et al.  Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. , 2005, Investigative ophthalmology & visual science.

[84]  M. Araie,et al.  Sphere therapy for corneal endothelium deficiency in a rabbit model. , 2005, Investigative ophthalmology & visual science.

[85]  A. Quantock,et al.  Stromal architecture and immune tolerance in additive corneal xenografts in rodents. , 2005, Acta ophthalmologica.

[86]  T. Mimura,et al.  Human corneal endothelial cell precursors isolated by sphere-forming assay. , 2005, Investigative ophthalmology & visual science.

[87]  M. Araie,et al.  Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. , 2005, Experimental eye research.

[88]  N. Joyce,et al.  Human Corneal Endothelial Cell Proliferation: Potential for Use in Regenerative Medicine , 2004, Cornea.

[89]  M. Araie,et al.  Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. , 2004, Investigative ophthalmology & visual science.

[90]  M. Araie,et al.  Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. , 2004, Experimental eye research.

[91]  N. Fullwood,et al.  Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. , 2004, Investigative ophthalmology & visual science.

[92]  F. Hoffmann,et al.  Orthotopic corneal transplantation in the mouse — a new surgical technique with minimal endothelial cell loss , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[93]  S. Amano Transplantation of Cultured Human Corneal Endothelial Cells , 2003, Cornea.

[94]  M. Araie,et al.  Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet's membrane. , 2003, Experimental eye research.

[95]  K. Burridge,et al.  RhoA and ROCK Promote Migration by Limiting Membrane Protrusions* , 2003, The Journal of Biological Chemistry.

[96]  M. Taniguchi,et al.  Long-Term Survival of Corneal Allografts Is Dependent on Intact CD1d-Reactive NKT Cells1 , 2002, The Journal of Immunology.

[97]  K. Engelmann,et al.  Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells , 2001, The British journal of ophthalmology.

[98]  Keith Burridge,et al.  RhoA is required for monocyte tail retraction during transendothelial migration , 2001, The Journal of cell biology.

[99]  J. Streilein,et al.  Dynamics of donor cell persistence and recipient cell replacement in orthotopic corneal allografts in mice. , 2001, Investigative ophthalmology & visual science.

[100]  T. Oshika,et al.  Expression of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in corneal lymphangiogenesis. , 2001, Experimental eye research.

[101]  J. Pepose,et al.  Repopulation of denuded murine Descemet’s membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[102]  A. Sweatt,et al.  Wound healing following anterior keratectomy and lamellar keratoplasty in the pig. , 1999, Journal of refractive surgery.

[103]  T. Tsuru,et al.  Increase in orthotopic murine corneal transplantation rejection rate with anterior synechiae. , 1999, Investigative ophthalmology & visual science.

[104]  G. Russ,et al.  A new model of orthotopic penetrating corneal transplantation in the sheep: graft survival, phenotypes of graft-infiltrating cells and local cytokine production. , 1999, Australian and New Zealand journal of ophthalmology.

[105]  E. Pels,et al.  A surgical technique for posterior lamellar keratoplasty. , 1998, Cornea.

[106]  E. Holland,et al.  In vivo confocal microscopic analysis of corneal allograft rejection in rabbits. , 1998, Cornea.

[107]  Z. Haskova,et al.  The role of major and minor histocompatibility antigens in orthotopic corneal transplantation in mice. , 1996, Folia biologica.

[108]  S. Kaufman,et al.  Confocal Microscopy of Corneal Graft Rejection , 1995, Cornea.

[109]  J. Pepose,et al.  T-cell mediated responses in a murine model of orthotopic corneal transplantation. , 1995, Investigative ophthalmology & visual science.

[110]  T. Wood,et al.  Corneal endothelial cell transplantation using Descemet's membrane as a carrier , 1993, Journal of cataract and refractive surgery.

[111]  J. Streilein,et al.  ORTHOTOPIC CORNEAL TRANSPLANTATION IN MICE—EVIDENCE THAT THE IMMUNOGENETIC RULES OF REJECTION DO NOT APPLY , 1992, Transplantation.

[112]  S. Amano,et al.  Keratoepithelioplasty in rat: development of a model and histological study. , 1992, Japanese journal of ophthalmology.

[113]  J. Niederkorn,et al.  Promotion of murine orthotopic corneal allograft survival by systemic administration of anti-CD4 monoclonal antibody. , 1991, Investigative ophthalmology & visual science.

[114]  M. Insler,et al.  Extended incubation times improve corneal endothelial cell transplantation success. , 1991, Investigative ophthalmology & visual science.

[115]  E. J. Moticka,et al.  A method for performing full-thickness, orthotopic, penetrating keratoplasty in the mouse. , 1990, Ophthalmic surgery.

[116]  J. McCulley,et al.  A comparison between interrupted and continuous suturing techniques in keratoplasty. , 1990, Cornea.

[117]  N. Tripoli,et al.  Cat endothelial morphology after corneal transplant. , 1990, Current eye research.

[118]  D. Coster,et al.  The role of the limbus in corneal allograft rejection , 1989, Eye.

[119]  R. Maske,et al.  AN ANIMAL MODEL FOR CORNEAL GRAFT REJECTION IN HIGH‐RISK KERATOPLASTY , 1988, Transplantation.

[120]  Collin Hb,et al.  The effects of hypertonic salicylate on neutrophil migration and vascularization in the rat cornea. , 1987 .

[121]  M. Insler,et al.  Transplantation of cultured human neonatal corneal endothelium. , 1986, Current eye research.

[122]  D. Coster,et al.  A comparison of the effects of topical cyclosporine and topical steroid on rabbit corneal allograft rejection. , 1985, Transplantation.

[123]  A. Sugar,et al.  Penetrating keratoplasty in the cat. A clinically applicable model. , 1982, Ophthalmology.

[124]  D. Gospodarowicz,et al.  Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium. The cat as an experimental model. , 1979, Archives of ophthalmology.

[125]  D. Gospodarowicz,et al.  The coating of bovine and rabbit corneas denuded of their endothelium with bovine corneal endothelial cells. , 1979, Experimental eye research.

[126]  D. Gospodarowicz,et al.  Transplantation of cultured bovine corneal endothelial cells to rabbit cornea: clinical implications for human studies. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[127]  D. Maurice,et al.  Transplantation of tissue-cultured corneal endothelium. , 1978, Investigative ophthalmology & visual science.

[128]  W. M. Bourne,et al.  The effect of splenectomy on corneal graft rejection. , 1976, Investigative ophthalmology.

[129]  A. Silverstein,et al.  Local graft versus host reactions within the anterior chamber of the eye: the formation of corneal endothelial pocks. , 1975, Investigative ophthalmology.

[130]  J. Aquavella,et al.  Hypertonic saline solution in corneal edema. , 1975, Annals of ophthalmology.

[131]  A. Silverstein,et al.  Studies on the nature of the privilege enjoyed by corneal allografts. , 1972, Investigative Ophthalmology.

[132]  A. Silverstein,et al.  Transplantation and rejection of individual cell layers of the cornea. , 1969, Investigative ophthalmology.

[133]  A. Khodadoust Penetrating keratoplasty in the rabbit. , 1968, American journal of ophthalmology.

[134]  P. V. Rycroft Corneal graft membranes. , 1965, Transactions of the ophthalmological societies of the United Kingdom.

[135]  B. Rycroft The corneal graft--past, present and future. , 1965, Transactions of the ophthalmological societies of the United Kingdom.

[136]  J. Wadsworth,et al.  Surgical technique of corneal transplantation in rabbits; a discussion of the problems encountered and suggestions for their solution. , 1947, American journal of ophthalmology-glaucoma.

[137]  R. Castroviejo Keratoplasty-Microscopic Study of the Corneal Grafts. , 1937, Transactions of the American Ophthalmological Society.