Shoreline detection: capability of COSMO-SkyMed and high-resolution multispectral images

Abstract This study aims to extract the instantaneous shoreline from remote sensing data acquired with very high resolution multispectral and SAR sensors. The capabilities of IKONOS. GeoEye and COSMO-SkyMed for shoreline detection are tested in the Venice littoral (Italy) by classifying the imagery into its land/water components. GPS measurements synchronously to the COSMO-SkyMed acquisitions are carried out along two transects at different tidal levels and used for validation of satellite derived shorelines. Finally, a collection of instantaneous coastlines at a specific tidal level is mapped for reconstructing the intertidal beach morphologic model.

[1]  Bo Li,et al.  A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta , 2008 .

[2]  R. Zeidler Continental shorelines: climate change and integrated coastal management , 1997 .

[3]  M. Larson,et al.  Swash-zone sediment transport and foreshore evolution: field experiments and mathematical modeling , 2004 .

[4]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[5]  Yun Zhang,et al.  A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Fabio Del Frate,et al.  An application of COSMO-Sky Med to coastal erosion studies , 2012 .

[7]  Jong-Sen Lee,et al.  Coastline Detection And Tracing In SAr Images , 1990 .

[8]  A. Alesheikh,et al.  Coastline change detection using remote sensing , 2007 .

[9]  Tazio Strozzi,et al.  TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability , 2009 .

[10]  Ioannis Pitas,et al.  Digital Image Processing Algorithms and Applications , 2000 .

[11]  Matthew S. Horritt,et al.  A methodology for the validation of uncertain flood inundation models , 2006 .

[12]  Pietro Alessandro Brivio,et al.  Principi e metodi di Telerilevamento , 2006 .

[13]  Chuanmin Hu,et al.  Shoreline changes in west-central Florida between 1987 and 2008 from Landsat observations , 2011 .

[14]  L. Tosi,et al.  Hydro-morphologic setting of the Samborombón Bay (Argentina) at the end of the 21st century , 2013 .

[15]  Pietro Teatini,et al.  A new project to monitor land subsidence in the northern Venice coastland (Italy) , 2007 .

[16]  Frank S. Marzano,et al.  Detection of floods and heavy rain using Cosmo-SkyMed data: The event in Northwestern Italy of November 2011 , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Maurizio Migliaccio,et al.  Dual-Polarized TerraSAR-X Data for Oil-Spill Observation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[18]  A. Cracknell Remote sensing techniques in estuaries and coastal zones an update , 1999 .

[19]  Thomas S. Huang,et al.  Image processing , 1971 .

[20]  H. Liu,et al.  Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods , 2004 .

[21]  Manuel A. Aguilar,et al.  PRELIMINARY RESULTS ON HIGH ACCURACY ESTIMATION OF SHORELINE CHANGE RATE BASED ON COASTAL ELEVATION MODELS , 2010 .

[22]  Di Kaichang,et al.  Geometric Processing of Ikonos Stereo Imagery for Coastal Mapping Applications , 2003 .

[23]  P. Simonini,et al.  Integrating Geotechnical and Interferometric SAR Measurements for Secondary Compressibility Characterization of Coastal Soils , 2012, Surveys in Geophysics.

[24]  David C. Mason,et al.  Accurate and efficient determination of the shoreline in ERS-1 SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[25]  Sandip Mukherjee,et al.  Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India , 2012 .

[26]  Tazio Strozzi,et al.  Ground surface dynamics in the northern Adriatic coastland over the last two decades , 2010 .

[27]  J. Ryu,et al.  Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea , 2002 .

[28]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[29]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[30]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[31]  F. M. Speed,et al.  Evaluation of Shorelines and Legal Boundaries Controlled by Water Levels on Sandy Beaches , 1998 .

[32]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[33]  K. White,et al.  Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta , 1999 .

[34]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[35]  Kaichang Di,et al.  3-D Shoreline Extraction from IKONOS Satellite Imagery , 2003 .

[36]  L. Tosi,et al.  Land subsidence and degradation of the Venice littoral zone, Italy , 1995 .

[37]  Kenneth C. Jezek,et al.  Mapping ice sheet margins from ERS-1 SAR and SPOT imagery , 1999 .

[38]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[39]  Xiaofeng Li,et al.  Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[40]  José Luis Pérez-García,et al.  A New, Robust, and Accurate Method to Extract Tide-Coordinated Shorelines from Coastal Elevation Models , 2012 .

[41]  A. Oosterlinck,et al.  Coastline detection from SAR images , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Xiao-Yan Li,et al.  Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005) , 2011 .

[43]  Paul Russell,et al.  Hydrodynamics and Cross-Shore Sediment Transport in the Swash-Zone of Natural Beaches: A Review , 2000 .

[44]  Rosamaria Salvatori,et al.  A new approach to detect shoreline from satellite images. , 2008 .

[45]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[46]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Ian L Turner,et al.  Shoreline Definition and Detection: A Review , 2005 .

[48]  A. Mazzoldi,et al.  Coastal processes and environmental hazards: the Buenos Aires (Argentina) and Venetian (Italy) littorals , 2007 .

[49]  Carlos López-Martínez,et al.  Edge Enhancement Algorithm Based on the Wavelet Transform for Automatic Edge Detection in SAR Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Tazio Strozzi,et al.  Natural versus anthropogenic subsidence of Venice , 2013, Scientific Reports.

[51]  L. Ruiz,et al.  Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision , 2012 .

[52]  Laura Carbognin,et al.  Interaction between Climate Changes, Eustacy and Land Subsidence in the North Adriatic Region, Italy , 2002 .

[53]  A. Coletta,et al.  COSMO-SkyMed Mission: a set of X-band SAR Applications conducted during 2008 , 2009 .

[54]  Qiusheng Wu,et al.  Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data , 2011, J. Geogr. Inf. Syst..

[55]  Bailey,et al.  National Ocean Service Shoreline? Past, Present, and Future , 2003 .

[56]  Tazio Strozzi,et al.  Cosmo-skymed versus TerraSAR-X -based interferometry for monitoring the mose settlements at the Venice lagoon inlets , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[57]  P. Brivio,et al.  Assessing wetland changes in the venice lagoon by means of satellite remote sensing data , 1996 .

[58]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..