Minimum cell connection and separation in line segment arrangements

We study the complexity of the following cell connection and separation problems in segment arrangements. Given a set of straight-line segments in the plane and two points a and b: (i) compute the minimum number of segments one needs to remove so that there is a path connecting a to b that does not intersect any of the remaining segments; (ii) compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell; (iii) compute the minimum number of segments one needs to retain so that any path connecting a to b intersects some of the retained segments. We show that problems (i) and (ii) are NP-hard, while problem (iii) is polynomialtime solvable. We also discuss special polynomial-time and xed-parameter tractable cases.

[1]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[2]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[3]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[4]  Kuan-Chieh Robert Tseng Resilience of wireless sensor networks , 2011 .

[5]  Jack Snoeyink,et al.  Testing Homotopy for Paths in the Plane , 2002, SCG '02.

[6]  Mark de Berg,et al.  On lazy randomized incremental construction , 1995, Discret. Comput. Geom..

[7]  Seth Hutchinson,et al.  Barrier Coverage for Variable Bounded-Range Line-of-Sight Guards , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  David M. Mount,et al.  The Number of Shortest Paths on the Surface of a Polyhedron , 1990, SIAM J. Comput..

[9]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[10]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[11]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[12]  Sergio Cabello,et al.  Finding shortest non-trivial cycles in directed graphs on surfaces , 2010, J. Comput. Geom..

[13]  A. Karimi,et al.  Master‟s thesis , 2011 .

[14]  G. Winskel What Is Discrete Mathematics , 2007 .

[15]  J. Pach,et al.  Representation of planar graphs by segments , 1994 .

[16]  Ilan Newman,et al.  On grid intersection graphs , 1991, Discret. Math..

[17]  Leonidas J. Guibas,et al.  On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.

[18]  Michael R. Fellows,et al.  The parameterized complexity of some minimum label problems , 2009, J. Comput. Syst. Sci..

[19]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[20]  Sergey Bereg,et al.  Approximating Barrier Resilience in Wireless Sensor Networks , 2009, ALGOSENSORS.

[21]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[22]  Michael A. Bender,et al.  The Level Ancestor Problem Simplified , 2002, LATIN.

[23]  Leonidas J. Guibas,et al.  Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.

[24]  Mark de Berg,et al.  On lazy randomized incremental construction , 1994, STOC '94.

[25]  Gerhard J. Woeginger,et al.  Paths and cycles in colored graphs , 2001, Australas. J Comb..

[26]  Carsten Thomassen,et al.  Embeddings of graphs with no short noncontractible cycles , 1990, J. Comb. Theory, Ser. B.

[27]  Matt Gibson,et al.  On Isolating Points Using Disks , 2011, ESA.

[28]  Anish Arora,et al.  Barrier coverage with wireless sensors , 2005, MobiCom '05.

[29]  Refael Hassin,et al.  Approximation algorithms and hardness results for labeled connectivity problems , 2006, J. Comb. Optim..

[30]  Sadish Sadasivam,et al.  On Representation of Planar Graphs by Segments , 2008, AAIM.