Polar stratospheric cloud microphysics and chemistry

Abstract The solid and liquid particles which constitute polar stratospheric clouds (PSCs) are of manifold importance to the meteorology of the stratosphere. The heterogeneous reactions which take place on and within these particles release halogens from relatively inert reservoir species into forms which can destroy ozone in the polar spring. In addition, solid PSC particles are instrumental in the physical removal of nitrogen oxides (denitrification) and water (dehydration) of regions of the polar stratosphere. Denitrification, in particular, allows extended ozone destruction by slowing the conversion of chlorine radicals back into reservoir species. We review the historical development of PSC studies, with particular emphasis on results from the last decade, encompassing developments in observations, in laboratory experiments, and in theoretical treatments. The technical challenge of measuring sufficient of the parameters describing any given PSC, to allow its microphysics to be understood, has driven forward balloon-borne, aircraft, and satellite instrumentation. The technical challenge of finding suitable laboratory proxies for PSCs, in order to observe the microphysics under controlled conditions, has resulted in a wide variety of experimental designs, some of which maximise the probability of observing phase change, others which mimic the surface–volume ratios of PSCs more closely. The challenge to theory presented by PSCs has resulted in improvements in the thermodynamics of concentrated inorganic solutions of volatile compounds, and a new general theory of freezing of water ice from concentrated aqueous solutions. Of the major processes involving PSCs, heterogeneous reaction probabilities for ternary HNO 3 /H 2 SO 4 /H 2 O solutions, and heterogeneous freezing to produce nitric-acid hydrates, are the least well understood.

[1]  P. Brimblecombe,et al.  Solubility of HOCl in water and aqueous H2SO4 to stratospheric temperatures , 1995 .

[2]  B. Finlayson‐Pitts,et al.  Infrared Spectroscopic Studies of Binary Solutions of Nitric Acid and Water and Ternary Solutions of Nitric Acid, Sulfuric Acid, and Water at Room Temperature: Evidence for Molecular Nitric Acid at the Surface , 2001 .

[3]  D. Duft,et al.  Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets , 2004 .

[4]  M. Molina,et al.  Vapor pressure measurements for sulfuric acid/nitric acid/water and sulfuric acid/hydrochloric acid/water systems: incorporation of stratospheric acids into background sulfate aerosols , 1993 .

[5]  P. Crutzen,et al.  Size-dependent stratospheric droplet composition in Lee wave temperature fluctuations and their potential role in PSC freezing , 1995 .

[6]  D. Toohey,et al.  Chlorine Chemistry on Polar Stratospheric Cloud Particles in the Arctic Winter , 1993, Science.

[7]  C. Voigt,et al.  A mass spectrometer system for analysis of polar stratospheric aerosols , 2002 .

[8]  N. S. Higdon,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .

[9]  J. Rosen The Boiling Point of Stratospheric Aerosols , 1971 .

[10]  G. Mann,et al.  3-D microphysical model studies of Arctic denitrification: comparison with observations , 2005 .

[11]  P. Crutzen,et al.  The lifetime of leewave-induced ice particles in the Arctic stratosphere: II. Stabilization due to NAT-coating , 1994 .

[12]  Gian Paolo Gobbi,et al.  Physical properties of stratospheric clouds during the Antarctic winter of 1995 , 1998 .

[13]  H. Schlager,et al.  Balloon observations of nitric acid aerosol formation in the Arctic stratosphere: II. Aerosol , 1990 .

[14]  M. Zahniser,et al.  Vapor Pressures of Solid Hydrates of Nitric Acid: Implications for Polar Stratospheric Clouds , 1993, Science.

[15]  M. Molina,et al.  HCl vapour pressures and reaction probabilities for ClONO2+ HCl on liquid H2SO4–HNO3–HCl–H2O solutions , 1995 .

[16]  S. Oltmans,et al.  Balloon borne observations of PSCs, Frost Point, ozone and nitric acid in the north polar vortex , 1989 .

[17]  C. Voigt,et al.  Nitric acid trihydrate (NAT) in polar stratospheric clouds. , 2000, Science.

[18]  T. Peter Airborne Particle Analysis for Climate Studies , 1996, Science.

[19]  H. Schlager,et al.  Balloon observations of nitric acid aerosol formation in the Arctic stratosphere: I. Gaseous nitric acid , 1990 .

[20]  K. Kelly,et al.  Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation , 1992 .

[21]  Nikolaos Nikiforakis,et al.  A condensed-mass advection based model for the simulation of liquid polar stratospheric clouds , 2002 .

[22]  Martin Wirth,et al.  Aircraft lidar observations of an enhanced type Ia polar stratospheric clouds during APE‐POLECAT , 1999 .

[23]  Martyn P. Chipperfield,et al.  Arctic ozone loss and climate change , 2004 .

[24]  M. Leutbecher,et al.  Model‐guided Lagrangian observation and simulation of mountain polar stratospheric clouds , 1999 .

[25]  K. Hoppel,et al.  Discriminating Types Ia and Ib polar stratospheric clouds in POAM satellite data , 2002 .

[26]  P. Crutzen,et al.  Activation of stratospheric chlorine by reactions in liquid sulphuric acid , 1994 .

[27]  C. Voigt,et al.  Extreme NAT supersaturations in mountain wave ice PSCs: A clue to NAT formation , 2003 .

[28]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[29]  Takashi Shibata,et al.  Polar stratospheric clouds observed by lidar over Spitsbergen in the winter of 1994/1995: Liquid particles and vertical “sandwich” structure , 1997 .

[30]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[31]  J. Remedios,et al.  Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003 , 2004 .

[32]  A. Bertram,et al.  The nucleation rate constants and freezing mechanism of nitric acid trihydrate aerosol under stratospheric conditions , 1998 .

[33]  H. Bunz,et al.  Homogeneous nucleation rates of nitric acid dihydrate ( NAD ) at simulated stratospheric conditions – Part II : Modelling , 2006 .

[34]  M. Schoeberl,et al.  Role of the Stratospheric Polar Freezing Belt in Denitrification , 2001, Science.

[35]  Konrad Mauersberger,et al.  A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K , 1993 .

[36]  D. Fahey,et al.  An analysis of large HNO3‐containing particles sampled in the Arctic stratosphere during the winter of 1999/2000 , 2002 .

[37]  J. Greenblatt,et al.  Evidence for the widespread presence of liquid-phase particles during the 1999–2000 Arctic winter , 2002 .

[38]  R. Turco,et al.  On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions , 1988 .

[39]  S. Wofsy,et al.  Condensation of HNO3 on falling ice particles: Mechanism for denitrification of the polar stratosphere , 1990 .

[40]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .

[41]  R. Turco,et al.  Denitrification through PSC formation: A 1-D model incorporating temperature oscillations , 1991 .

[42]  T. Wagner,et al.  Observational evidence of rapid chlorine activation by mountain waves above northern Scandinavia , 2004 .

[43]  Voigt,et al.  Chemical analysis of polar stratospheric cloud particles , 1999, Science.

[44]  M. Chipperfield,et al.  A vortex‐scale simulation of the growth and sedimentation of large nitric acid hydrate particles , 2002 .

[45]  P. Hamill,et al.  Freezing behavior of stratospheric sulfate aerosols inferred from trajectory studies , 1995 .

[46]  Paul J. Crutzen,et al.  Increase in the PSC‐formation probability caused by high‐flying aircraft , 1991 .

[47]  P. Crutzen,et al.  Freezing of HNO3/H2SO4/H2O Solutions at Stratospheric Temperatures: Nucleation Statistics and Experiments , 1997 .

[48]  M. Molina,et al.  Homogeneous Freezing of Concentrated Aqueous Nitric Acid Solutions at Polar Stratospheric Temperatures , 2001 .

[49]  M. Juckes,et al.  The ASSET intercomparison of ozone analyses: method and first results , 2006 .

[50]  M. Pitts,et al.  A unified, long‐term, high‐latitude stratospheric aerosol and cloud database using SAM II, SAGE II, and POAM II/III data: Algorithm description, database definition, and climatology , 2003 .

[51]  C. Voigt,et al.  Chemical, microphysical, and optical properties of polar stratospheric clouds , 2002 .

[52]  L. Iraci,et al.  Ice condensation on sulfuric acid tetrahydrate: implications for polar stratospheric ice clouds , 2003 .

[53]  G. S. Kent,et al.  Airborne lidar observations of Arctic polar stratospheric clouds , 1986 .

[54]  Laura T. Iraci,et al.  Dissolution of sulfuric acid tetrahydrate at low temperatures and subsequent growth of nitric acid trihydrate , 1998 .

[55]  P. Crutzen,et al.  Do stratospheric aerosol droplets freeze above the ice frost point , 1995 .

[56]  P. Sheridan,et al.  Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes , 1994 .

[57]  J. Farman,et al.  Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction , 1985, Nature.

[58]  A. Middlebrook,et al.  Evaporation studies of model polar stratospheric cloud films , 1996 .

[59]  R. Garcia,et al.  Role of aerosol variations in anthropogenic ozone depletion in the polar regions , 1996 .

[60]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[61]  M. Schoeberl,et al.  Microphysical modeling of the 1999–2000 Arctic winter 2. Chlorine activation and ozone depletion , 2002 .

[62]  S. Massie,et al.  Properties of polar stratospheric clouds observed by ILAS in early 1997 , 2003 .

[63]  D. R. Hanson The vapor pressures of supercooled HNO3/H2O solutions , 1990 .

[64]  H. Schlager,et al.  Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs) , 2005 .

[65]  H. Schlager,et al.  Simulation of denitrification and ozone loss for the Arctic winter 2002/2003 , 2004 .

[66]  P. Massoli,et al.  Differences in Arctic and Antarctic PSC occurrence as observed by lidar in Ny-Alesund (79° N, 12° E) and McMurdo (78° S, 167° E) , 2004 .

[67]  Terry Deshler,et al.  Balloonborne measurements of polar stratospheric clouds and ozone at‐93° C in the Arctic in February 1990 , 1990 .

[68]  M. Molina,et al.  Composition and freezing of aqueous H2SO4/HNO3 solutions under polar stratospheric conditions , 1994 .

[69]  张哉根,et al.  Leu-M , 1991 .

[70]  H. M. Steele,et al.  Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere , 1981 .

[71]  Laurie S. McNeill,et al.  Fourier transform-infrared studies of thin H2SO4/H2O films: Formation, water uptake, and solid-liquid phase changes , 1993 .

[72]  M. Pitts,et al.  Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurement II observations from 1978 to 1989 , 1994 .

[73]  R. Turco,et al.  A study of type I polar stratospheric cloud formation , 1994 .

[74]  M. Mishchenko,et al.  Constraints on PSC particle microphysics derived from lidar observations , 2001 .

[75]  O. Toon,et al.  ATMOSPHERIC SCIENCE: Enhanced: Solving the PSC Mystery , 2001 .

[76]  D. Fahey,et al.  In situ measurements of total reactive nitrogen, total water, and aerosol in a polar stratospheric cloud in the Antarctic , 1989 .

[77]  Santee,et al.  Quantifying denitrification and its effect on ozone recovery , 2000, Science.

[78]  S. Pawson,et al.  The cold winters of the middle 1990s in the northern lower stratosphere , 1999 .

[79]  K. Mikkelsen,et al.  Coexistence of metastable nitric acid dihydrates: A molecular level contribution to understanding the formation of polar stratospheric clouds crystals , 2006 .

[80]  D. Fahey,et al.  The Seasonal Evolution of Reactive Chlorine in the Northern Hemisphere Stratosphere , 1993, Science.

[81]  L. Thomason,et al.  A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 , 1997 .

[82]  R. Turco,et al.  Heterogeneous physicochemistry of the polar ozone hole , 1989 .

[83]  Hermann Oelhaf,et al.  Formation of solid particles in synoptic-scale Arctic PSCs in early winter 2002/2003 , 2004 .

[84]  M. McCormick,et al.  High-Latitude Stratospheric Aerosols Measured by the SAM II Satellite System in 1978 and 1979 , 1981, Science.

[85]  B. Luo,et al.  Freezing of polar stratospheric clouds in orographically induced strong warming events , 1997 .

[86]  C. Voigt,et al.  Non‐equilibrium compositions of liquid polar stratospheric clouds in gravity waves , 2000 .

[87]  Renyi Zhang,et al.  Hydrolysis of N2O5 and CLONO2 on the H2SO4/HNO3/H2O Ternary , 1995 .

[88]  Timo Vesala,et al.  On the theories of type 1 polar stratospheric cloud formation , 1995 .

[89]  A. Bertram,et al.  Mechanisms and Temperatures for the Freezing of Sulfuric Acid Aerosols Measured by FTIR Extinction Spectroscopy , 1996 .

[90]  Leopoldo Stefanutti,et al.  A climatological study of polar stratospheric clouds (1989–1997) from LIDAR measurements over Dumont d’Urville (Antarctica) , 2001 .

[91]  H. Reiss,et al.  Surface crystallization of supercooled water in clouds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  P. Crutzen,et al.  FTIR studies on lifetime prolongation of stratospheric ice particles due to NAT coating , 1998 .

[93]  R. Turco,et al.  Condensation of HNO3 and HCl in the winter polar stratospheres , 1986 .

[94]  S. Solomon Progress towards a quantitative understanding of Antarctic ozone depletion , 1990, Nature.

[95]  C. Voigt,et al.  Nat-rock Formation by Mother Clouds Nat-rock Formation by Mother Clouds: a Microphysical Model Study Acpd Nat-rock Formation by Mother Clouds , 2001 .

[96]  M. Molina,et al.  A NEW OPTICAL TECHNIQUE TO STUDY AEROSOL PHASE TRANSITIONS : THE NUCLEATION OF ICE FROM H2SO4 AEROSOLS , 1998 .

[97]  S. Solomon The hole truth , 2004, Nature.

[98]  T. Peter,et al.  Microphysics and heterogeneous chemistry of polar stratospheric clouds. , 1997, Annual review of physical chemistry.

[99]  S. Massie,et al.  Polar stratospheric clouds observed by the ILAS-II in the Antarctic region: Dual compositions and variation of compositions during June to August of 2003 , 2006 .

[100]  P. Brimblecombe,et al.  A Thermodynamic Model of the System HCl-HNO3-H2SO4-H2O, Including Solubilities of HBr, from <200 to 328 K , 1995 .

[101]  M. Kulmala,et al.  The Turnbull correlation and the freezing of stratospheric aerosol droplets , 1998 .

[102]  C. N. Hewitt,et al.  Handbook of Atmospheric Science , 2003 .

[103]  A. Middlebrook,et al.  Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films , 1995 .

[104]  Veronika Eyring,et al.  A Strategy for Process-Oriented Validation of Coupled Chemistry- Climate Models , 2005 .

[105]  K. Carslaw,et al.  Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds , 1996, Science.

[106]  D. Offermann,et al.  CRISTA‐2 observations of the South Polar Vortex in winter 1997: A new dataset for polar process studies , 2001 .

[107]  Randal L. VanValkenburg,et al.  SAGE III observations of Arctic polar stratospheric clouds – December 2002 , 2003 .

[108]  S. H. Maron,et al.  Phase Equilibria of the System Sulfur Trioxide-Water1 , 1950 .

[109]  Paul J. Crutzen,et al.  Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles , 1994 .

[110]  P. Jungwirth,et al.  Homogeneous freezing of water starts in the subsurface. , 2006, The journal of physical chemistry. B.

[111]  T. Peter,et al.  Thermodynamic stability and phase transitions of PSC particles , 1997 .

[112]  K. Gierens On the transition between heterogeneous and homogeneous freezing , 2002 .

[113]  G. Somorjai,et al.  STUDIES OF THE VAPORIZATION MECHANISM OF ICE SINGLE CRYSTALS , 1971 .

[114]  D. Baumgardner,et al.  Interpretation of measurements made by the forward scattering spectrometer probe (FSSP-300) during the Airborne Arctic Stratospheric Expedition , 1992 .

[115]  P. Crutzen,et al.  Arctic ozone loss due to denitrification , 1999, Science.

[116]  M. Molina,et al.  Study of finely divided aqueous systems as an aid to understanding the formation mechanism of polar stratospheric clouds: Case of HNO3/H2O and H2SO4/H2O systems , 2003 .

[117]  J. Reichardt,et al.  Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions , 2001 .

[118]  Nucleation rates of nitric acid dihydrate in 1∶2 HNO3/H2O solutions at stratospheric temperatures , 2000 .

[119]  M. P. McCormick,et al.  Polar Stratospheric Cloud Sightings by SAM II , 1982 .

[120]  H. Bunz,et al.  Homogeneous nucleation rates of nitric acid dihydrate (NAD) at simulated stratospheric conditions - Part I: Experimental results , 2006 .

[121]  John L. Stanford,et al.  A Century of Stratospheric Cloud Reports: 1870-1972. , 1974 .

[122]  D. R. Hanson Reaction of ClONO2 with H2O and HCl in Sulfuric Acid and HNO3/H2SO4/H2O Mixtures , 1998 .

[123]  Heterogeneous Interactions of ClONO2 and HCl with Sulfuric Acid Tetrahydrate: Implications for the Stratosphere , 1994 .

[124]  M. Molina,et al.  Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds , 1993, Science.

[125]  M. Molina,et al.  Phase transitions in emulsified HNO3/H2O and HNO3/H2SO4/H2O solutions , 1999 .

[126]  Edward V. Browell,et al.  Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989 , 2000 .

[127]  J. Remedios,et al.  Observations of a distinctive infra‐red spectral feature in the atmospheric spectra of polar stratospheric clouds measured by the CRISTA instrument , 2003 .

[128]  H. Reiss,et al.  Laboratory Evidence for Surface Nucleation of Solid Polar Stratospheric Cloud Particles , 2002 .

[129]  M. Leutbecher,et al.  Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds , 1998 .

[130]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[131]  W. Grant,et al.  Using gas-phase nitric acid as an indicator of PSC composition , 2002 .

[132]  P. Massoli,et al.  Spectroscopic evidence for ?-NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds , 2018 .

[133]  B. Luo,et al.  Homogeneous nucleation of NAD and NAT in liquid stratospheric aerosols: insufficient to explain denitrification , 2002 .

[134]  T. Peter,et al.  Modeling the composition of liquid stratospheric aerosols , 1997 .

[135]  H. Schlager,et al.  Liquid particle composition and heterogeneous reactions in a mountain wave Polar Stratospheric Cloud , 2005 .

[136]  D. Hofmann Stratospheric cloud micro-layers and small-scale temperature variations in the Arctic in 1989 , 1990 .

[137]  M. Molina,et al.  Formation of polar stratospheric clouds on preactivated background aerosols , 1996 .

[138]  Renyi Zhang,et al.  Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces , 1994 .

[139]  M. Wirth,et al.  Increased stratospheric ozone depletion due to mountain-induced atmospheric waves , 1998, Nature.

[140]  T. L. Thompson,et al.  The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere , 2001, Science.

[141]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[142]  D. Fahey,et al.  Severe and extensive denitrification in the 1999–2000 Arctic winter stratosphere , 2001 .

[143]  S. Solomon,et al.  On the depletion of Antarctic ozone , 1986, Nature.

[144]  G. Mann,et al.  Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/2003 , 2005 .

[145]  W. Randel,et al.  Climatology of Arctic and Antarctic Polar Vortices Using Elliptical Diagnostics , 1999 .

[146]  D. Worsnop,et al.  Kinetic model for reaction of ClONO2 with H2O and HCl and HOCl with HCl in sulfuric acid solutions , 2001 .

[147]  M. Zondlo,et al.  Chemistry and microphysics of polar stratospheric clouds and cirrus clouds. , 2000, Annual review of physical chemistry.

[148]  A. Prenni,et al.  Crystallization Kinetics of Nitric Acid Dihydrate Aerosols , 1996 .

[149]  D. Fahey,et al.  Observations of denitrification and dehydration in the winter polar stratospheres , 1990, Nature.

[150]  S. Balestri,et al.  APE-POLECAT - rationale, road map and summary of measurements , 1999 .