Beam switching and bifocal zoom lensing using active plasmonic metasurfaces

[1]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[2]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[3]  Federico Capasso,et al.  Ultracompact metasurface in-line polarimeter , 2016 .

[4]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[5]  H. Giessen,et al.  Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz. , 2015, Optics express.

[6]  Harald Giessen,et al.  Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range. , 2015, Nano letters.

[7]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[8]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[9]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[10]  Thomas Taubner,et al.  Active Chiral Plasmonics. , 2015, Nano letters.

[11]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[12]  P. R. West,et al.  All-dielectric Subwavelength Metasurface Focusing Lens References and Links , 2022 .

[13]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[14]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[15]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[16]  Harald Giessen,et al.  Yttrium hydride nanoantennas for active plasmonics , 2014, Optics & Photonics - NanoScience + Engineering.

[17]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[18]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[19]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[20]  C. H. F. Velzel A course in lens design , 2014 .

[21]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[22]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[23]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[24]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[25]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[26]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[27]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[29]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[30]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[31]  Teri W. Odom,et al.  Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions. , 2012, Nano letters.

[32]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[33]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[34]  Louis H. Sullivan,et al.  The Tall Office Building Artistically Considered , 2012 .

[35]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[36]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[37]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[38]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[39]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[40]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[41]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[42]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[43]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[44]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[45]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[46]  Srinivas Sridhar,et al.  Flat lens without optical axis: Theory of imaging. , 2005, Optics express.

[47]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[48]  Thomas K. Gaylord,et al.  Rigorous electromagnetic analysis of diffractive cylindrical lenses , 1996 .

[49]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .