Optical tweezers and their applications

Abstract Optical tweezers, tools based on strongly focused light, enable optical trapping, manipulation, and characterisation of a wide range of microscopic and nanoscopic materials. In the limiting cases of spherical particles either much smaller or much larger than the trapping wavelength, the force in optical tweezers separates into a conservative gradient force, which is proportional to the light intensity gradient and responsible for trapping, and a non-conservative scattering force, which is proportional to the light intensity and is generally detrimental for trapping, but fundamental for optical manipulation and laser cooling. For non-spherical particles or at intermediate (meso)scales, the situation is more complex and this traditional identification of gradient and scattering force is more elusive. Moreover, shape and composition can have dramatic consequences for optically trapped particle dynamics. Here, after an introduction to the theory and practice of optical forces with a focus on the role of shape and composition, we give an overview of some recent applications to biology, nanotechnology, spectroscopy, stochastic thermodynamics, critical Casimir forces, and active matter.

[1]  Frank Schweitzer,et al.  Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[2]  J. Popp,et al.  Raman investigations on laser-trapped gas bubbles , 1997 .

[3]  D. Spadaro,et al.  Optical tweezers: a non-destructive tool for soft and biomaterial investigations , 2015, Rendiconti Lincei.

[4]  Pavel Zemánek,et al.  Theoretical comparison of optical traps created by standing wave and single beam , 2003 .

[5]  W Sibbett,et al.  Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays. , 2004, Optics express.

[6]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[7]  Adriana Fontes,et al.  Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. , 2006, Optics express.

[8]  Halina Rubinsztein-Dunlop,et al.  Laser trapping of colloidal metal nanoparticles. , 2015, ACS nano.

[9]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[10]  A. Mazzulla,et al.  Chiral resolution of spin angular momentum in linearly polarized and unpolarized light , 2015, Scientific Reports.

[11]  Thomas W. Ebbesen,et al.  Mechanical separation of chiral dipoles by chiral light , 2013, 1306.3708.

[12]  Samuel A. Safran,et al.  Localized Dynamic Light Scattering: Probing Single Particle Dynamics at the Nanoscale , 1997 .

[13]  R. Saija,et al.  Optical trapping and optical force positioning of two-dimensional materials. , 2018, Nanoscale.

[14]  Édgar Roldán,et al.  Colloidal heat engines: a review. , 2017, Soft Matter.

[15]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[16]  Michael I. Mishchenko,et al.  Radiation force caused by scattering, absorption, and emission of light by nonspherical particles , 2001 .

[17]  Burns,et al.  Optical binding. , 1989, Physical review letters.

[18]  H. Rubinsztein-Dunlop,et al.  Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .

[19]  Giovanni Volpe,et al.  Non-Boltzmann stationary distributions and nonequilibrium relations in active baths. , 2016, Physical review. E.

[20]  Norman R. Heckenberg,et al.  Colloquium: Momentum of an electromagnetic wave in dielectric media , 2007, 0710.0461.

[21]  Giorgio Volpe,et al.  Step-by-step guide to the realization of advanced optical tweezers , 2015, 1501.07894.

[22]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[23]  Clemens F Kaminski,et al.  Detection of Plasmodium falciparum-infected red blood cells by optical stretching. , 2010, Journal of biomedical optics.

[24]  Arianna Giusto,et al.  Transverse components of the radiation force on nonspherical particles in the T-matrix formalism , 2005 .

[25]  刘楠 Graphene , 2012 .

[26]  Giovanni Volpe,et al.  Optical Tweezers: Principles and Applications , 2016 .

[27]  Kishan Dholakia,et al.  Membrane disruption by optically controlled microbubble cavitation , 2005 .

[28]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[29]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[30]  H. Hernández-Figueroa,et al.  Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces , 2011, Biomedical optics express.

[31]  A. Buosciolo,et al.  New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers , 2004 .

[32]  Christopher D. Mellor,et al.  Polarization effects in optically bound particle arrays. , 2006, Optics express.

[33]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[34]  D. Grier A revolution in optical manipulation , 2003, Nature.

[35]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[36]  Guangzong Xiao,et al.  Optically bound colloidal lattices in evanescent optical fields. , 2016, Optics letters.

[37]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[38]  Christopher D. Mellor,et al.  Array formation in evanescent waves. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  P. Denti,et al.  Optical properties of a dispersion of anisotropic particles with non-randomly distributed orientations. The case of atmospheric ice crystals , 2001 .

[40]  Franco Nori,et al.  Extraordinary momentum and spin in evanescent waves , 2013, Nature Communications.

[41]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[42]  Halina Rubinsztein-Dunlop,et al.  Comparison of T-matrix calculation methods for scattering by cylinders in optical tweezers. , 2014, Optics letters.

[43]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[44]  Philip H. Jones,et al.  Optically bound particle structures in evanescent wave traps , 2012, NanoScience + Engineering.

[45]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[46]  J. Sáenz,et al.  Marqués and Sáenz reply. , 2013, Physical review letters.

[47]  Y. Sheng,et al.  Effect of the object 3D shape on the viscoelastic testing in optical tweezers. , 2015, Optics express.

[48]  Andrés Díaz Lantada,et al.  Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies , 2014, Biomedical microdevices.

[49]  Etienne Brasselet,et al.  Optofluidic sorting of material chirality by chiral light , 2014, Nature Communications.

[50]  E. Di Fabrizio,et al.  Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. , 2011, Nanoscale.

[51]  C Bechinger,et al.  Critical Casimir effect in classical binary liquid mixtures. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[53]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[54]  S. Redner Equilibrium and Non-Equilibrium Statistical Thermodynamics. , 2006 .

[55]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[56]  Gianluca Memoli,et al.  Trapping and deformation of microbubbles in a dual-beam fibre-optic trap , 2012 .

[57]  Simon Hanna,et al.  First-order nonconservative motion of optically trapped nonspherical particles. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[59]  Gianluca Memoli,et al.  Acoustic force measurements on polymer-coated microbubbles in a microfluidic device. , 2017, The Journal of the Acoustical Society of America.

[60]  Síle Nic Chormaic,et al.  Optical trapping and manipulation of micrometer and submicrometer particles , 2015 .

[61]  P. D. Gennes,et al.  Phénomènes aux parois dans un mélange binaire critique , 2003 .

[62]  Oto Brzobohatý,et al.  Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers , 2015, Scientific Reports.

[63]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  Jochen Feldmann,et al.  Optical force stamping lithography. , 2011, Nano letters.

[65]  L. Elton Atomic Physics , 1966, Nature.

[66]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[67]  Oto Brzobohatý,et al.  Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. , 2015, Optics express.

[68]  V. G. Truong,et al.  Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. , 2016, Optics express.

[69]  Guido Bolognesi,et al.  Optical characterization of an individual polymer-shelled microbubble structure via digital holography , 2012 .

[70]  D. Grier,et al.  Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. , 2004, Optics express.

[71]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[72]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[73]  M J Padgett,et al.  Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. , 2000, Optics letters.

[74]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[75]  C. Satriano,et al.  Tuning the structural and optical properties of gold/silver nano-alloys prepared by laser ablation in liquids for optical limiting, ultra-sensitive spectroscopy, and optical trapping , 2012 .

[76]  Yong-Gu Lee,et al.  Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method. , 2008, Optics express.

[77]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[78]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[79]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[80]  Xiang Zhang,et al.  Optical forces in hybrid plasmonic waveguides. , 2011, Nano letters.

[81]  E. Brasselet,et al.  Spin controlled optical radiation pressure. , 2013 .

[82]  A. Y. Bekshaev,et al.  Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever , 2015 .

[83]  Yunlong Sheng,et al.  Dynamic deformation of red blood cell in dual-trap optical tweezers. , 2010, Optics express.

[84]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[85]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[86]  G. J. Brakenhoff,et al.  A NEW METHOD TO STUDY SHAPE RECOVERY OF RED BLOOD CELLS USING MULTIPLE OPTICAL TRAPPING , 1995 .

[87]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[88]  Ulrich F Keyser,et al.  Real-time particle tracking at 10,000 fps using optical fiber illumination. , 2010, Optics express.

[89]  S. Ramaswamy The Mechanics and Statistics of Active Matter , 2010, 1004.1933.

[90]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[91]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[92]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[93]  S Kawata,et al.  Optically driven Mie particles in an evanescent field along a channeled waveguide. , 1996, Optics letters.

[94]  Isaac C. D. Lenton,et al.  Theory and practice of simulation of optical tweezers , 2017, Journal of Quantitative Spectroscopy and Radiative Transfer.

[95]  P. Snabre,et al.  Optically driven oscillations of ellipsoidal particles. Part I: Experimental observations , 2014, The European physical journal. E, Soft matter.

[96]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[97]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[98]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[99]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[100]  Patricia Scully,et al.  Direct laser write process for 3D conductive carbon circuits in polyimide , 2017 .

[101]  Karen Volke-Sepúlveda,et al.  Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. , 2013, Lab on a chip.

[102]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[103]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[104]  J M Ward,et al.  Contributed review: optical micro- and nanofiber pulling rig. , 2014, The Review of scientific instruments.

[105]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[106]  P. Denti,et al.  Optical properties of spheres containing a spherical eccentric inclusion , 1992 .

[107]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[108]  Saurabh Raj,et al.  Mechanochemistry of single red blood cells monitored using Raman tweezers , 2012, Biomedical optics express.

[109]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[110]  R. Saija,et al.  Optical Trapping of Plasmonic Mesocapsules: Enhanced Optical Forces and SERS , 2017 .

[111]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[112]  Philip H Jones,et al.  Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires. , 2016, Nano letters.

[113]  R. Saija,et al.  Scaling of optical forces on Au–PEG core–shell nanoparticles , 2015 .

[114]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[115]  R. Agrawal,et al.  Red blood cells in retinal vascular disorders. , 2016, Blood cells, molecules & diseases.

[116]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[117]  Francesco Priolo,et al.  Size-scaling in optical trapping of silicon nanowires. , 2011, Nano letters.

[118]  M C Frawley,et al.  Selective particle trapping and optical binding in the evanescent field of an optical nanofiber. , 2014, Optics express.

[119]  M. Wegener,et al.  Guiding Cell Attachment in 3D Microscaffolds Selectively Functionalized with Two Distinct Adhesion Proteins , 2017, Advanced materials.

[120]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[121]  Takuo Tanaka,et al.  Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide , 2000 .

[122]  L. Fréchette,et al.  A Silicon Microturbopump for a Rankine-Cycle Power-Generation Microsystem—Part II: Fabrication and Characterization , 2011, Journal of Microelectromechanical Systems.

[123]  S. Suresh,et al.  Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships , 2006 .

[124]  Jie Xu,et al.  A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization , 2007 .

[125]  J. Kempen,et al.  The Collaborative Ocular Tuberculosis Study (COTS)-1: A Multinational Description of the Spectrum of Choroidal Involvement in 245 Patients with Tubercular Uveitis , 2018, Ocular immunology and inflammation.

[126]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[127]  A. Ferrari,et al.  Optical trapping of nanotubes with cylindrical vector beams. , 2012, Optics letters.

[128]  Ernst-Ludwig Florin,et al.  Ultrastrong optical binding of metallic nanoparticles. , 2012, Nano letters.

[129]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[130]  E. Stelzer,et al.  Photonic force microscope calibration by thermal noise analysis , 1998 .

[131]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[132]  Lachlan J. Gibson,et al.  Spatially-resolved rotational microrheology with an optically-trapped sphere , 2013, Scientific Reports.

[133]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[134]  Simon Hanna,et al.  Optical binding of nanowires in counterpropagating beams , 2013, Optics & Photonics - NanoScience + Engineering.

[135]  Eleanor Stride,et al.  Experimental characterisation of holographic optical traps for microbubbles , 2014, Photonics Europe.

[136]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[137]  Vincenzo Amendola,et al.  Surface plasmon resonance in gold nanoparticles: a review , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[138]  P. Quinto-Su,et al.  A microscopic steam engine implemented in an optical tweezer , 2014, Nature Communications.

[139]  Nonconservative dynamics of optically trapped high-aspect-ratio nanowires. , 2015, Physical review. E.

[140]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[141]  Federico Capasso,et al.  Lateral chirality-sorting optical forces , 2015, Proceedings of the National Academy of Sciences.

[142]  Arthur Ashkin,et al.  Atomic-Beam Deflection by Resonance-Radiation Pressure , 1970 .

[143]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[144]  Mikael Käll,et al.  Ultrafast spinning of gold nanoparticles in water using circularly polarized light. , 2013, Nano letters.

[145]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[146]  Roberto Cingolani,et al.  Axial optical trapping efficiency through a dielectric interface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[148]  D B Phillips,et al.  Measuring nanoscale forces with living probes. , 2012, Nano letters.

[149]  F. Bragheri,et al.  Integrated microfluidic device for single-cell trapping and spectroscopy , 2013, Scientific Reports.

[150]  P. Denti,et al.  Optical properties of a sphere in the vicinity of a plane surface , 1997 .

[151]  Rosalba Saija,et al.  On the rotational stability of nonspherical particles driven by the radiation torque. , 2007, Optics express.

[152]  Michael G Nichols,et al.  Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher. , 2009, Applied optics.

[153]  Sylvain Gigan,et al.  Disorder-mediated crowd control in an active matter system , 2016, Nature Communications.

[154]  Alireza Mashaghi,et al.  Atorvastatin treatment softens human red blood cells: an optical tweezers study. , 2018, Biomedical optics express.

[155]  Simon Hanna,et al.  Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. , 2011, Optics express.

[156]  Kazushi Yamanaka,et al.  IN ACOUSTIC MICROSCOPY , 1982 .

[157]  P. Chaikin,et al.  Periodic oscillation of a colloidal disk near a wall in an optical trap. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[158]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[159]  Yunlong Sheng,et al.  Calculation of spherical red blood cell deformation in a dual-beam optical stretcher. , 2007, Optics express.

[160]  Philip J. Wyatt,et al.  Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects , 1962 .

[161]  Yunlong Sheng,et al.  Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers. , 2013, Optics express.

[162]  T. Ha Probing Nature's Nanomachines One Molecule at a Time. , 2016, Biophysical journal.

[163]  Tom Pfeiffer,et al.  Single-step injection of gold nanoparticles through phospholipid membranes. , 2011, ACS nano.

[164]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[165]  Giovanni Volpe,et al.  Computational toolbox for optical tweezers in geometrical optics , 2014, 1402.5439.

[166]  P. Denti,et al.  Efficient light-scattering calculations for aggregates of large spheres. , 2003, Applied optics.

[167]  N. Scherer,et al.  All-optical patterning of Au nanoparticles on surfaces using optical traps. , 2010, Nano letters.

[168]  Thomas J. Smart,et al.  Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique , 2016, Scientific Reports.

[169]  A. Ishimaru Wave propagation and scattering in random media and rough surfaces , 1991, Proc. IEEE.

[170]  I. Rukhlenko,et al.  Completely Chiral Optical Force for Enantioseparation , 2016, Scientific Reports.

[171]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[172]  Satoshi Kawata,et al.  Two-photon photopolymerization and 3D lithographic microfabrication , 2005 .

[173]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[174]  Steven M. Block,et al.  Compliance of bacterial flagella measured with optical tweezers , 1989, Nature.

[175]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[176]  Philip L. Marston,et al.  Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave , 1984 .

[177]  R. Metzler,et al.  Strange kinetics of single molecules in living cells , 2012 .

[178]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[179]  David Sinton,et al.  Optohydrodynamic theory of particles in a dual-beam optical trap , 2008 .

[180]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[181]  O. Maragò,et al.  Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers , 2012 .

[182]  K. Thelander A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires , 2008 .

[183]  Clemens F. Kaminski,et al.  Biophotonic techniques for the study of malaria-infected red blood cells , 2010, Medical & Biological Engineering & Computing.

[184]  Philip H Jones,et al.  Parametrization of trapping forces on microbubbles in scanning optical tweezers , 2007 .

[185]  Moreno Meneghetti,et al.  Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. , 2011, ACS nano.

[186]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[187]  Cambridge,et al.  A basic swimmer at low Reynolds number , 2008, 0807.1867.

[188]  Ming-Tzo Wei,et al.  Complex fluids: probing mechanical properties of biological systems with optical tweezers. , 2010, Annual review of physical chemistry.

[189]  Giovanni Volpe,et al.  Controlling the dynamics of colloidal particles by critical Casimir forces. , 2018, Soft matter.

[190]  G. Volpe,et al.  Active Particles in Complex and Crowded Environments , 2016, 1602.00081.

[191]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[192]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[193]  O. M. Maragò,et al.  Photonic Force Microscopy: From Femtonewton Force Sensing to Ultra-Sensitive Spectroscopy , 2010 .

[194]  L. Hesselink,et al.  A semi-analytical model of a near-field optical trapping potential well , 2017 .

[195]  Giovanni Volpe,et al.  Optical tweezers with cylindrical vector beams produced by optical fibers , 2004, SPIE Optics + Photonics.

[196]  F. Nori,et al.  Spin-Momentum Locking in the Near Field of Metal Nanoparticles , 2017, 1703.00205.

[197]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[198]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[199]  Gianluca Memoli,et al.  Multiscale manipulation of microbubbles employing simultaneous optical and acoustical trapping , 2014, Optics & Photonics - NanoScience + Engineering.

[200]  Síle Nic Chormaic,et al.  Higher order microfibre modes for dielectric particle trapping and propulsion , 2014, Scientific Reports.

[201]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[202]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[203]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[204]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[205]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[206]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[207]  Simon Hanna,et al.  FDTD simulations of forces on particles during holographic assembly. , 2008, Optics express.

[208]  Miha Ravnik,et al.  Geometrical frustration of chiral ordering in cholesteric droplets , 2012 .

[209]  Yunlong Sheng,et al.  One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. , 2008, Optics express.

[210]  S. Simpson Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications , 2014 .

[211]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[212]  Paolo Denti,et al.  Multiple electromagnetic scattering from a cluster of spheres , 1981 .

[213]  Kishan Dholakia,et al.  Extended-area optically induced organization of microparticles on a surface , 2005 .

[214]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[215]  Edward L. Wolf,et al.  Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience , 2004 .

[216]  Fei Peng,et al.  Micro- and nano-motors for biomedical applications. , 2014, Journal of materials chemistry. B.

[217]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[218]  Zijie Yan,et al.  Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. , 2013, ACS nano.

[219]  Hong-Ren Jiang,et al.  Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. , 2010, Physical review letters.

[220]  P. Zemánek,et al.  Optical Binding of Nanowires. , 2017, Nano letters.

[221]  Halina Rubinsztein-Dunlop,et al.  Optical tweezers: Theory and modelling , 2014 .

[222]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[223]  P. Cicuta,et al.  Red blood cell dynamics: from spontaneous fluctuations to non-linear response , 2011 .

[224]  E. Stride,et al.  Analysis of the Uncertainty in Microbubble Characterization. , 2016, Ultrasound in medicine & biology.

[225]  Jan Gieseler,et al.  Levitated Nanoparticles for Microscopic Thermodynamics—A Review , 2018, Entropy.

[226]  D. Petrov,et al.  Brownian Carnot engine , 2014, Nature Physics.

[227]  C. Girard Near fields in nanostructures , 2005 .

[228]  Atef Z. Elsherbeni,et al.  The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations , 2015 .

[229]  G. Volpe,et al.  Microscopic Engine Powered by Critical Demixing. , 2017, Physical review letters.

[230]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[231]  H. M. Nussenzveig,et al.  Theory of optical tweezers , 1999 .

[232]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[233]  O. Maragò,et al.  Optical Aggregation of Gold Nanoparticles for SERS Detection of Proteins and Toxins in Liquid Environment: Towards Ultrasensitive and Selective Detection , 2018, Materials.

[234]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[235]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[236]  P. Bartlett,et al.  Position correlation microscopy: probing single particle dynamics in colloidal suspensions , 2001 .

[237]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[238]  M. Wegener,et al.  Two‐Component Polymer Scaffolds for Controlled Three‐Dimensional Cell Culture , 2011, Advanced materials.

[239]  Eleanor Stride,et al.  Trapping and manipulation of microscopic bubbles with a scanning optical tweezer , 2006 .

[240]  Norman R. Heckenberg,et al.  Approximate and exact modeling of optical trapping , 2010, NanoScience + Engineering.

[241]  Rosalba Saija,et al.  Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .

[242]  P. Zemánek,et al.  Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. , 2017, ACS nano.

[243]  G. Volpe,et al.  Nonadditivity of critical Casimir forces , 2015, Nature Communications.

[244]  Mehmet Burcin Unlu,et al.  Microbubble trapping in inverted optical tweezers , 2017, NanoScience + Engineering.

[245]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[246]  A. Mazzulla,et al.  Light-induced rotations of chiral birefringent microparticles in optical tweezers , 2016, Scientific Reports.

[247]  Philip H. Jones,et al.  Optical trapping of carbon nanotubes , 2008 .

[248]  Craig Donner,et al.  Scattering , 2021, SIGGRAPH '09.

[249]  Aldrik H. Velders,et al.  Assembling quantum dots via critical Casimir forces , 2016 .

[250]  P. Denti,et al.  Radiation torque on nonspherical particles in the transition matrix formalism. , 2006, Optics express.

[251]  Jurij Kotar,et al.  The nonlinear mechanical response of the red blood cell , 2007, Physical biology.

[252]  Gérard Gouesbet,et al.  T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates , 2010 .

[253]  O. Maragò,et al.  SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating , 2016, Scientific Reports.

[254]  M. Marqués Beam configuration proposal to verify that scattering forces come from the orbital part of the Poynting vector. , 2014, Optics letters.

[255]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[256]  R. Saija,et al.  Trapping volume control in optical tweezers using cylindrical vector beams. , 2013, Optics letters.

[257]  H. Chapman,et al.  Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. , 2016, Optics express.

[258]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[259]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[260]  Xiang Han,et al.  Evanescent wave optical binding forces on spherical microparticles. , 2015, Optics letters.

[261]  Frank Cichos,et al.  Microscopic engine powered by critical demixing , 2017 .

[262]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[263]  Simon Hanna,et al.  Shape-induced force fields in optical trapping , 2014, Nature Photonics.

[264]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[265]  A. Neves Photonic Nanojets in Optical Tweezers , 2015, 1502.01315.

[266]  F. De Angelis,et al.  Micro-Optics Fabrication on Top of Optical Fibers Using Two-Photon Lithography , 2010, IEEE Photonics Technology Letters.

[267]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[268]  A. Mazzulla,et al.  Polarization-dependent optomechanics mediated by chiral microresonators , 2014, Nature Communications.

[269]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[270]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[271]  Debra J Searles,et al.  Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. , 2002, Physical review letters.

[272]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[273]  A. Mazzulla,et al.  Chiral Self‐Assembled Solid Microspheres: A Novel Multifunctional Microphotonic Device , 2011, Advanced materials.

[274]  Etienne Brasselet,et al.  Helicity-dependent three-dimensional optical trapping of chiral microparticles , 2014, Nature Communications.

[275]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[276]  P. Jeon,et al.  Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher. , 2015, Biomedical optics express.

[277]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[278]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[279]  M. Nichols,et al.  Hybrid Ray Optics and Continuum Mechanics Modeling of Cell Deformation in the Optical Stretcher , 2007 .