Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures

Ferroelectric oxide materials have offered a tantalizing potential for applications since the discovery of ferroelectric perovskites more than 50 years ago. Their switchable electric polarization is ideal for use in devices for memory storage and integrated microelectronics, but progress has long been hampered by difficulties in materials processing. Recent breakthroughs in the synthesis of complex oxides have brought the field to an entirely new level, in which complex artificial oxide structures can be realized with an atomic-level precision comparable to that well known for semiconductor heterostructures. Not only can the necessary high-quality ferroelectric films now be grown for new device capabilities, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxides, to create multifunctional materials and devices. Moreover, the shrinking of the relevant lengths to the nanoscale produces new physical phenomena. Real-space characterization and manipulation of the structure and properties at atomic scales involves new kinds of local probes and a key role for first-principles theory.

[1]  N. Pertsev,et al.  Effective dielectric and piezoelectric constants of thin polycrystalline ferroelectric films , 1998 .

[2]  Chang-Beom Eom,et al.  Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes , 1993 .

[3]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[4]  M. Kawasaki,et al.  Nonlinear magneto-optical kerr rotation of an oxide superlattice with artificially broken symmetry , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[5]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[6]  Ahn,et al.  Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films , 1999, Science.

[7]  P. Günter,et al.  Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy , 1996 .

[8]  A. Gutakovskii,et al.  High resolution electron microscopy of semiconductor interfaces , 1995 .

[9]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[10]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[11]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[12]  Rainer Waser,et al.  Direct hysteresis measurements of single nanosized ferroelectric capacitors contacted with an atomic force microscope , 2001 .

[13]  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[14]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[15]  B. Terris,et al.  Imaging of ferroelectric domain walls by force microscopy , 1990 .

[16]  A. Munkholm,et al.  Antiferrodistortive reconstruction of the PbTiO(3)(001) surface. , 2001, Physical review letters.

[17]  R. Scholz,et al.  Ferroelectric epitaxial nanocrystals obtained by a self-patterning method , 2003 .

[18]  X. Hong,et al.  Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La 1 − x Sr x MnO 3 , 2003 .

[19]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[20]  Yi Wang,et al.  Epitaxial ferroelectric Pb(Zr, Ti)O3 thin films on Si using SrTiO3 template layers , 2002 .

[21]  T. Maruyama,et al.  Formation and observation of 50 nm polarized domains in PbZr1−xTixO3 thin film using scanning probe microscope , 1996 .

[22]  J. Melngailis,et al.  Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si , 2002 .

[23]  Darrell G. Schlom,et al.  Oxide nano-engineering using MBE , 2001 .

[24]  E. Colla,et al.  Artificial dielectric superlattices with broken inversion symmetry. , 2003, Physical review letters.

[25]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[26]  D. Norton,et al.  Antiferroelectric behavior in symmetric KNbO(3)/KTaO(3) superlattices. , 2002, Physical review letters.

[27]  D. R. Tilley,et al.  Landau theory of phase transitions in thick films , 1984 .

[28]  Thomas Tybell,et al.  Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures , 1997 .

[29]  S. Phillpot,et al.  Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation , 2002 .

[30]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[31]  Orlando Auciello,et al.  Nanoscale imaging of domain dynamics and retention in ferroelectric thin films , 1997 .

[32]  D. Vanderbilt,et al.  Ab initio study of BaTiO 3 and PbTiO 3 surfaces in external electric fields , 2000, cond-mat/0009288.

[33]  K. Rabe,et al.  Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films , 1999, cond-mat/9911354.

[34]  J. A. Misewich,et al.  A field effect transistor based on the Mott transition in a molecular layer , 1996 .

[35]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[36]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[37]  Nagaya Okada,et al.  Size Effect on the Phase Transition in PbTiO3 Fine Particles , 1996 .

[38]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[39]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[40]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[41]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[42]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[43]  H. Christen,et al.  Field-dependent dielectric permittivity of paraelectric superlattice structures , 1998 .

[44]  V. Wood,et al.  Epitaxial growth of Pb(Zr0.2Ti0.8)O3 on Si and its nanoscale piezoelectric properties , 2001 .

[45]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[46]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[47]  LATTICE DYNAMICS OF BATIO3, PBTIO3, AND PBZRO3 : A COMPARATIVE FIRST-PRINCIPLES STUDY , 1999, cond-mat/9901246.

[48]  Kenji Kitamura,et al.  Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy , 2002 .

[49]  P. Littlewood,et al.  LETTER TO THE EDITOR: Depolarization corrections to the coercive field in thin-film ferroelectrics , 2003 .

[50]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[51]  James F. Scott,et al.  Nano-phase ferroelectric arrays for Gbit devices , 2001 .

[52]  Ilya Grinberg,et al.  Relationship between local structure and phase transitions of a disordered solid solution , 2002, Nature.

[53]  T. Makino,et al.  Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with “asymmetric” structure , 2002 .

[54]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[55]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.