Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO2) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

[1]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[2]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[3]  H. Toshiyoshi,et al.  Experimental investigation of radiative thermal rectifier using vanadium dioxide , 2014 .

[4]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[5]  Hidekazu Tanaka,et al.  Filling-controlled Mott transition in W-doped VO2 , 2012 .

[6]  Nuo Yang,et al.  Thermal rectification in asymmetric graphene ribbons , 2009, 0906.1046.

[7]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[8]  Philippe Ben-Abdallah,et al.  Near-field thermal transistor. , 2013, Physical review letters.

[9]  T. Takeuchi Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals , 2014, Science and technology of advanced materials.

[10]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[11]  S. Fan,et al.  Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates , 2012 .

[12]  Improvement in rectification ratio of an Al-based bulk thermal rectifier working at high temperatures , 2012 .

[13]  Hidekazu Tanaka,et al.  Multistate Memory Devices Based on Free‐standing VO2/TiO2 Microstructures Driven by Joule Self‐Heating , 2012, Advanced materials.

[14]  S. Ramanathan,et al.  Multi-Resistance States Through Electrically Driven Phase Transitions in VO 2 / HfO 2 / VO 2 Heterostructures on Silicon , 2011 .

[15]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[16]  Federico Capasso,et al.  Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance , 2013 .

[17]  A. S. Barker,et al.  Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature , 1966 .

[18]  Svend-Age Biehs,et al.  Phase-change radiative thermal diode , 2013, 1307.3154.

[19]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[20]  M. Martínez-Pérez,et al.  Rectification of electronic heat current by a hybrid thermal diode. , 2014, Nature nanotechnology.

[21]  Svend-Age Biehs,et al.  Radiative bistability and thermal memory. , 2014, Physical review letters.

[22]  Z. M. Zhang,et al.  Thermal Rectification Enabled by Near-Field Radiative Heat Transfer Between Intrinsic Silicon and a Dissimilar Material , 2013 .

[23]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[24]  John T. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .

[25]  Mahmoud Elzouka,et al.  Near-field NanoThermoMechanical memory , 2014 .

[26]  Multi-Resistance States Through Electrically Driven Phase Transitions in $\hbox{VO}_{2}/\hbox{HfO}_{2}/\hbox{VO}_{2}$ Heterostructures on Silicon , 2012, IEEE Electron Device Letters.

[27]  S. Fan,et al.  Consideration of enhancement of thermal rectification using metamaterial models , 2014 .

[28]  Shanhui Fan,et al.  Thermal rectification through vacuum. , 2010, Physical review letters.

[29]  Xiaobo Yin,et al.  Temperature-gated thermal rectifier for active heat flow control. , 2014, Nano letters.

[30]  Qingxin Zhang,et al.  An Electrically Tuned Solid‐State Thermal Memory Based on Metal–Insulator Transition of Single‐Crystalline VO2 Nanobeams , 2011 .

[31]  Raimundo Carlos Silvério Freire,et al.  A hysteresis model for a vanadium dioxide transition-edge microbolometer , 2001, IEEE Trans. Instrum. Meas..

[32]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[33]  Sophia R. Sklan Splash, pop, sizzle: Information processing with phononic computing , 2015 .

[34]  Mathieu Francoeur,et al.  Near-field radiative transfer based thermal rectification using doped silicon , 2011 .

[35]  Liping Wang,et al.  Radiation-based near-field thermal rectification with phase transition materials , 2013 .

[36]  H. Toshiyoshi,et al.  Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer , 2015 .

[37]  D. Sawaki,et al.  Thermal rectification in bulk materials with asymmetric shape , 2011, 1102.4182.