Performance Evaluation and Optimisation of Industrial System in a Dynamic Maintenance

Despite the existence of the multitude of behavioral analysis tools for industrial systems, increasingly comp lex, managers to date find difficulties to define maintenance strategies able to significantly improve the overall performance of companies in terms of production, quality, safety and environment. A static maintenance and not adapted to the evolution of the state system does not meet the expectations of industrialists . However, the behavior of any degradable system is closely related to the state of its co mponents. This random influence is not always sufficiently considered for various reasons, consequently any decision making remains subjective. Our approach based on dynamic Bayesian networks (DBN) consists has the modeling of the system and the functional dependencies of its co mponents. The results obtained then, after the introduction in the model of the most appropriate actions of maintenance show all the importance of this technique and the possible applicat ions.

[1]  Patrice Aknin,et al.  Approches markovienne et semi-markovienne pour la modélisation de la fiabilité et des actions de maintenance d'un système ferroviaire , 2008 .

[2]  Benoît Iung,et al.  Integration of maintenance strategies into prognosis process to decision-making aid on system operation , 2005 .

[3]  Raphaël Schoenig DEFINITION D'UNE METHODOLOGIE DE CONCEPTION DES SYSTEMES MECATRONIQUES SURS DE FONCTIONNEMENT , 2004 .

[4]  Carol-Sophie Smidts,et al.  Theoretical basis of dynamic reliability problems , 2000 .

[5]  Nabil Sadou,et al.  Aide à la conception des systèmes embarqués sûrs de fonctionnement , 2007 .

[6]  Rafael Rumí,et al.  Aalborg Universitet Inference in hybrid Bayesian networks , 2016 .

[7]  G. Castaneda Evaluation par simulation de la sûreté de fonctionnement de systèmes en contexte dynamique hybride , 2009 .

[8]  Philippe Weber,et al.  Complex system reliability modelling with Dynamic Object Oriented Bayesian Networks (DOOBN) , 2006, Reliab. Eng. Syst. Saf..

[9]  Amel Demri,et al.  Contribution à l'évaluation de la fiabilité d'un système mécatronique par modélisation fonctionnelle et dysfonctionnelle , 2009 .

[10]  Patrice Aknin,et al.  Approche semi-markovienne pour la modélisation de stratégies de maintenance: application à la prévention de rupture du rail , 2008 .

[11]  Norman E. Fenton,et al.  Modeling dependable systems using hybrid Bayesian networks , 2006, First International Conference on Availability, Reliability and Security (ARES'06).

[12]  Gilles Celeux,et al.  Designing a Bayesian network for preventive maintenance from expert opinions in a rapid and reliable way , 2006, Reliab. Eng. Syst. Saf..

[13]  Benoît Iung,et al.  Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas , 2012, Eng. Appl. Artif. Intell..