Classification of hand movements in amputated subjects by sEMG and accelerometers

Numerous recent studies have aimed to improve myoelectric control of prostheses. However, the majority of these studies is characterized by two problems that could be easily fulfilled with recent resources supplied by the scientific literature. First, the majority of these studies use only intact subjects, with the unproved assumption that the results apply equally to amputees. Second, usually only electromyography data are used, despite other sensors (e.g., accelerometers) being easy to include into a real life prosthesis control system. In this paper we analyze the mentioned problems by the classification of 40 hand movements in 5 amputated and 40 intact subjects, using both sEMG and accelerometry data and applying several different state of the art methods. The datasets come from the NinaPro database, which supplies publicly available sEMG data to develop and test machine learning algorithms for prosthetics. The number of subjects can seem small at first sight, but it is not considering the literature of the field (which has to face the difficulty of recruiting trans-radial hand amputated subjects). Our results indicate that the maximum average classification accuracy for amputated subjects is 61.14%, which is just 15.86% less than intact subjects, and they show that intact subjects results can be used as proxy measure for amputated subjects. Finally, our comparison shows that accelerometry as a modality is less affected by amputation than electromyography, suggesting that real life prosthetics performance may easily be improved by inclusion of accelerometers.

[1]  Bruce C. Wheeler,et al.  EMG feature evaluation for movement control of upper extremity prostheses , 1995 .

[2]  Stefano Stramigioli,et al.  Myoelectric forearm prostheses: state of the art from a user-centered perspective. , 2011, Journal of rehabilitation research and development.

[3]  Marie-Françoise Lucas,et al.  Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization , 2008, Biomed. Signal Process. Control..

[4]  Vasiliki Kosmidou,et al.  Sign Language Recognition Using Intrinsic-Mode Sample Entropy on sEMG and Accelerometer Data , 2009, IEEE Transactions on Biomedical Engineering.

[5]  Kevin B. Englehart,et al.  A robust, real-time control scheme for multifunction myoelectric control , 2003, IEEE Transactions on Biomedical Engineering.

[6]  Guanglin Li,et al.  Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees , 2012, Journal of NeuroEngineering and Rehabilitation.

[7]  Barbara Caputo,et al.  Exploiting accelerometers to improve movement classification for prosthetics , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[8]  M Controzzi,et al.  Online Myoelectric Control of a Dexterous Hand Prosthesis by Transradial Amputees , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[9]  Ilja Kuzborskij,et al.  On the challenge of classifying 52 hand movements from surface electromyography , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  T. Kuiken,et al.  Quantifying Pattern Recognition—Based Myoelectric Control of Multifunctional Transradial Prostheses , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  Guanglin Li,et al.  Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control , 2009, IEEE Transactions on Biomedical Engineering.

[12]  Ilja Kuzborskij,et al.  Characterization of a Benchmark Database for Myoelectric Movement Classification , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[13]  Dario Farina,et al.  EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees , 2011, Journal of NeuroEngineering and Rehabilitation.

[14]  Manfredo Atzori,et al.  Movement Error Rate for Evaluation of Machine Learning Methods for sEMG-Based Hand Movement Classification , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[15]  Manfredo Atzori,et al.  Recognition of hand movements in a trans-radial amputated subject by sEMG , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[16]  Adrian D. C. Chan,et al.  A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses , 2005, IEEE Transactions on Biomedical Engineering.

[17]  Manfredo Atzori,et al.  Building the Ninapro database: A resource for the biorobotics community , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[18]  Erik J. Scheme,et al.  Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions , 2011, IEEE Transactions on Biomedical Engineering.

[19]  Øyvind Stavdahl,et al.  A multi-modal approach for hand motion classification using surface EMG and accelerometers , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Zeng-Guang Hou,et al.  Combined use of sEMG and accelerometer in hand motion classification considering forearm rotation , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[21]  Kongqiao Wang,et al.  A Sign-Component-Based Framework for Chinese Sign Language Recognition Using Accelerometer and sEMG Data , 2012, IEEE Transactions on Biomedical Engineering.

[22]  G. Lundborg,et al.  Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove. , 2005, The Journal of hand surgery.