Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration: Evidence from the EYE-RISK and European Eye Epidemiology Consortia.

PURPOSE Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. DESIGN Pooled analysis of cross-sectional data. PARTICIPANTS Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. METHODS AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. MAIN OUTCOME MEASURES AMD features and stage; lipid measurements. RESULTS HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14-1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91-0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10-1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 × 10-7), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 × 10-6 and P = 1.6 × 10-4). CONCLUSIONS Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered.

Christine Binquet | Elena Prokofyeva | Usha Chakravarthy | Giuliana Silvestri | Christian Simader | Imre Lengyel | Marius Ueffing | Catherine Creuzot-Garcher | Steffen Schmitz-Valckenberg | Irene Leung | Augusto Azuara-Blanco | Martin Bobak | Hanno Langen | Stefan Nickels | Rufino Silva | Alexander Schuster | Luisa Ribeiro | Gabriëlle H S Buitendijk | Cornelia M. van Duijn | Tunde Peto | Carel B. Hoyng | Sascha Fauser | Johanna M. Colijn | Timo Verzijden | Alicja Rudnicka | Cécile Delcourt | Geir Bertelsen | Terho Lehtimäki | Vincent Daien | Alan Bird | Christopher J. Hammond | Eric Souied | Vaibhav Bhatia | Fotis Topouzis | Hans-Werner Hense | Sandrina Nunes | Maria Luz Cachulo | Paul J. Foster | Jakob Grauslund | Alyson Muldrew | Isabelle Carrière | Hans Vingerling | Edoardo Midena | Stefano Piermarocchi | Pascale Benlian | Frank Holz | Soufiane Ajana | Niyazi Acar | Norbert Pfeiffer | Tos Berendschot | Eric H. Souied | Sascha Dammeier | Vittorio Capuano | Anthony P. Khawaja | Anthony Khawaja | Andrew Lotery | T. Lehtimäki | H. Hense | C. Klaver | O. Raitakari | M. Le Goff | A. Rudnicka | A. D. den Hollander | E. V. van Leeuwen | C. V. van Duijn | R. Broe | T. Peto | J. Grauslund | B. Arango-Gonzalez | M. Ueffing | S. Nickels | T. Berendschot | A. Bird | C. Creuzot-Garcher | A. Fletcher | S. Bhattacharya | E. Souied | R. Tapp | L. Ribeiro | M. Costa | S. Dammeier | N. Pfeiffer | A. Demirkan | P. Luthert | M. Bobák | C. Hammond | F. Grus | M. Rougier | C. Hoyng | K. Williams | V. Verhoeven | P. Cumberland | G. Bertelsen | C. Wolfram | A. Mirshahi | A. Khawaja | M. G. Erke | T. von Hanno | R. Hogg | A. Cougnard-Grégoire | A. Bron | J. Korobelnik | F. Topouzis | C. Delcourt | J. Rahi | J. Monés | S. Fauser | C. Simader | H. Springelkamp | F. Rauscher | Sabina Honisch | L. Bretillon | J. Zerbib | J. Lamparter | R. Finger | H. Langen | G. Silvestri | A. Lotery | M. Meester-Smoor | J. Colijn | Sofia M. Calado | E. D. de Jong | A. Cree | A. Schuster | S. Schmitz-Valckenberg | U. Chakravarthy | V. Arndt | T. Gorgels | A. Bergen | Paul J. Foster | J. Cunha-Vaz | C. Klaver | A. Azuara-Blanco | N. Jansonius | L. Altay | S. Piermarocchi | S. Miotto | C. Binquet | N. Acar | C. Schweitzer | E. Midena | A. Muldrew | T. Berendschot | C. Boon | G. Deak | V. Capuano | E. Nogoceke | I. Carrière | S. Diether | T. Schick | A. D. Hollander | Jean-Francois Korobelnik | Elisabeth M. van Leeuwen | Marc Biarnés | P. Benlian | V. Daien | I. Lengyel | J. Sahel | Jean-François Korobelnik | Shahzad Ahmad | Olli Raitakari | Ayse Demirkan | Astrid Fletcher | M. Delyfer | S. Nunes | Michelle Chan | Paul Foster | Chris G. Owen | Jennifer Yip | Jordi Monés | I. Leung | Eszter Emri | Benedicte M.J. Merle | Eveline Kersten | Magda Meester-Smoor | Frances M. Pool | Eiko K. de Jong | Everson Nogoceke | Anneke I. den Hollander | E. Emri | E. Prokofyeva | M. L. Cachulo | B. Merle | T. Segato | Rufino Silva | Soufiane Ajana | Vaibhav Bhatia | M. Biarnés | Anna Borrell | Sebastian Bühren | B. de la Cerda | F. Díaz-Corrales | Tanja Endermann | L. Ferraro | Míriam Garcia | E. Kersten | E. Kilger | C. Maugeais | Karl U. Ulrich Bartz-Schmidt | T. Verzijden | M. Zumbansen | Eleftherios Anastosopoulos | M. Chan | Petrus Chang | M. Dietzel | P. Founti | M. Hermann | René Hoehn | S. Janssen | M. Mauschitz | Verena Meyer zu Westrup | Sadek Mohan-Saïd | Aggeliki Salonikiou | C. Sánchez | J. Shehata | J. Yip | Katie M. Williams | Phillippa Cumberland | Christian Wolfram | Audrey Cougnard-Grégoire | Maja Gran Erke | Ruth Hogg | Alain Bron | Alireza Mirshahi | Jugnoo Rahi | J. Murta | Marie-Noëlle Delyfer | Marie-Bénédicte Rougier | Mélanie Le Goff | Alain M. Bron | René Hoehn | Franz Grus | Robert Finger | Panayiota Founti | Jennyfer Zerbib | Magda A. Meester-Smoor | Tatiana Segato | Blanca Arango-Gonzalez | Verena Arndt | Anna Borrell | Sebastian Bühren | Berta De la Cerda | Francisco J. Diaz-Corrales | Sigrid Diether | Tanja Endermann | Lucia L. Ferraro | Míriam Garcia | Thomas J. Heesterbeek | Sabina Honisch | Ellen Kilger | Phil Luthert | Cyrille Maugeais | Markus Zumbansen | Eleftherios Anastosopoulos | Arthur Bergen | Lionel Brétillon | Gabrielle Buitendijk | Petrus Chang | Johanna Colijn | Gabor Deak | Martha Dietzel | Theo Gorgels | Manuel Hermann | Carel Hoyng | Nomdo Jansonius | Sarah Janssen | Julia Lamparter | Matthias Mauschitz | Bénédicte Merle | Verena Meyer zu Westrup | Stefania Miotto | Sadek Mohan-Saïd | Aggeliki Salonikiou | Clarisa Sanchez | Cédric Schweitzer | Jasmin Shehata | Henriet Springelkamp | Robyn Tapp | Virginie Verhoeven | Therese Von Hanno | Katie Williams | Rupert Bourne | Tina Schick | José Cunha-Vaz | Anneke den Hollander | Grigorios Papageorgiou | Monique T. Mulder | Miguel Angelo Costa | Birte Claes | Caroline C.W. Klaver | Lebriz Altay | Morten Bøgelund Larsen | Camiel Boon | Rebecca Broe | Angela Cree | Eiko De Jong | Pedro Faria | Claudia Farinha | Christopher Hammond | Thomas Heesterbeek | Eiko de Jong | Caroline Klaver | Magda Meester | Michael Mueller | Joaquim Murta | Christopher Owen | Franziska Rauscher | José Sahel | Martynas Speckauskas | Elisa van Leeuwen | Shomi S. Bhattacharya | Bénédicte M.J. Merle Inserm | Eduardo Rodríguez | M. Mulder | Christopher Hammond | Cláudia Farinha | M. Špečkauskas | C. Owen | C. Hoyng | F. Holz | Verena Arndt | S. S. Bhattacharya | Eduardo Rodríguez | Michael Mueller | G. Papageorgiou | Morten B. Larsen | Pedro Faria | M. Meester | S. Ahmad | C. Farinha | R. Bourne | Giuliana Silvestri | B. Claes | Hans Vingerling | P. Foster | C. V. van Duijn | Christine Binquet | S. Schmitz-Valckenberg | H. Hense | G. Papageorgiou | S. Ahmad | M. T. Mulder | P. Benlian | Alireza Mirshahi | M. A. Costa | Olli T. Raitakari | Astrid E. Fletcher | Norbert Pfeiffer | A. Rudnicka | Terho Lehtimäki | Panayiota Founti | Sascha Fauser | C. Creuzot-Garcher | Rufino Silva | Jean-François Korobelnik | C. Delcourt | A. Bergen | C. Hammond | Isabelle Carrière | Hanno Langen | A. Lotery | P. Luthert | Robyn Tapp | Katie M. Williams | Jakob Grauslund | Marius Ueffing | Nomdo M. Jansonius | Henriët Springelkamp | Stefan Nickels | R. Finger | Cornelia M. Van Duijn | A. Bird | Augusto Azuara-Blanco | Petrus Chang | Theo Gorgels | F. Grus | Manuel Hermann | Sarah Janssen | Matthias M. Mauschitz | J. Murta | Sandrina Nunes | Franziska Rauscher | Marie-Bénédicte Rougier | Tina Schick | Alexander K Schuster | Cédric Schweitzer | Bénédicte M.J. Merle Inserm | J. Korobelnik

[1]  Subramaniam Pennathur,et al.  Combined Statin and Niacin Therapy Remodels the High-Density Lipoprotein Proteome , 2008, Circulation.

[2]  A. Hofman,et al.  Cholesterol lowering drugs and risk of age related maculopathy: prospective cohort study with cumulative exposure measurement , 2003, BMJ : British Medical Journal.

[3]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[4]  P. Barberger‐Gateau,et al.  Elevated High-Density Lipoprotein Cholesterol and Age-Related Macular Degeneration: The Alienor Study , 2014, PloS one.

[5]  M. Blumenkranz,et al.  Risk factors in age-related maculopathy complicated by choroidal neovascularization. , 1986, Ophthalmology.

[6]  Yue Han,et al.  CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration , 2015, Scientific Reports.

[7]  J. Neuman,et al.  Significant increase of high-density lipoprotein2-cholesterol under prolonged simvastatin treatment. , 1991, Atherosclerosis.

[8]  Reino Laatikainen,et al.  High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. , 2009, The Analyst.

[9]  Daniel R. Saban,et al.  Regulation of age-related macular degeneration-like pathology by complement factor H , 2015, Proceedings of the National Academy of Sciences.

[10]  Tom R. Gaunt,et al.  Metabolite Profiling and Cardiovascular Event RiskCLINICAL PERSPECTIVE , 2015 .

[11]  R. Klein,et al.  Statin use and the five-year incidence and progression of age-related macular degeneration. , 2007, American journal of ophthalmology.

[12]  J. Li,et al.  Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix , 2005, Heredity.

[13]  G. Ying,et al.  Statin use and the incidence of advanced age-related macular degeneration in the Complications of Age-related Macular Degeneration Prevention Trial. , 2009, Ophthalmology.

[14]  C. Klaver,et al.  Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. , 2018, Survey of ophthalmology.

[15]  Yara T. E. Lechanteur,et al.  Nature Genetics Advance Online Publication , 2022 .

[16]  D. Bok,et al.  Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration , 2011, Proceedings of the National Academy of Sciences.

[17]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[18]  G. Davey Smith,et al.  Mendelian Randomization Implicates High-Density Lipoprotein Cholesterol–Associated Mechanisms in Etiology of Age-Related Macular Degeneration , 2017, Ophthalmology.

[19]  M. Daly,et al.  Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. , 2011, Investigative ophthalmology & visual science.

[20]  Alun D. Hughes,et al.  Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase , 2016, Journal of the American College of Cardiology.

[21]  I. Rodriguez,et al.  Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. , 2006, Molecular vision.

[22]  A. Hofman,et al.  The risk and natural course of age-related maculopathy: follow-up at 6 1/2 years in the Rotterdam study. , 2003, Archives of ophthalmology.

[23]  M. Lavail,et al.  Expression of Reverse Cholesterol Transport Proteins Atp- Binding Cassette A1 (abca1) and Scavenger Receptor Bi (sr-bi) in the Retina and Retinal Pigment Epithelium Nih Public Access Author Manuscript $watermark-text , 2022 .

[24]  Robyn H. Guymer,et al.  Proof of Concept, Randomized, Placebo-Controlled Study of the Effect of Simvastatin on the Course of Age-Related Macular Degeneration , 2013, PloS one.

[25]  T. Wong,et al.  Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration[S] , 2017, Journal of Lipid Research.

[26]  P. O’Reilly,et al.  Long-term Leisure-time Physical Activity and Serum Metabolome , 2013, Circulation.

[27]  L. Ferrucci,et al.  Serum carboxymethyllysine, an advanced glycation end product, and age-related macular degeneration: the Age, Gene/Environment Susceptibility-Reykjavik Study. , 2014, JAMA ophthalmology.

[28]  J. Heinecke,et al.  Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? , 2018, Expert review of proteomics.

[29]  G. Abecasis,et al.  Genotype imputation. , 2009, Annual review of genomics and human genetics.

[30]  Christine A Curcio,et al.  The oil spill in ageing Bruch membrane , 2011, British Journal of Ophthalmology.

[31]  S. Deeb,et al.  The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. , 2012, Biochimica et biophysica acta.

[32]  H. Brunengraber,et al.  Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis , 2016, Journal of Lipid Research.

[33]  R. Luben,et al.  Cross Sectional and Longitudinal Associations between Cardiovascular Risk Factors and Age Related Macular Degeneration in the EPIC-Norfolk Eye Study , 2015, PloS one.

[34]  J. Glomset The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase. , 1962, Biochimica et biophysica acta.

[35]  J. Leddy,et al.  Inhibition of the lytic action of cell-bound terminal complement components by human high density lipoproteins and apoproteins. , 1983, The Journal of clinical investigation.

[36]  Farhad Rezaee,et al.  Proteomic analysis of high‐density lipoprotein , 2006, Proteomics.

[37]  J. Nie,et al.  The Association between the Lipids Levels in Blood and Risk of Age-Related Macular Degeneration , 2016, Nutrients.

[38]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[39]  A. Machalińska,et al.  Complement system activation and endothelial dysfunction in patients with age‐related macular degeneration (AMD): possible relationship between AMD and atherosclerosis , 2012, Acta ophthalmologica.

[40]  P. Zipfel,et al.  The Human Factor H-related Protein 4 (FHR-4) , 1997, The Journal of Biological Chemistry.

[41]  Hans Limburg,et al.  Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. , 2017, The Lancet. Global health.

[42]  J. Albers,et al.  Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins. , 1982, Biochemical and biophysical research communications.

[43]  S. Pillarisetti,et al.  Vascular lipases, inflammation and atherosclerosis. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[44]  Gabriëlle H S Buitendijk,et al.  Lipids, lipid genes, and incident age-related macular degeneration: the three continent age-related macular degeneration consortium. , 2014, American journal of ophthalmology.

[45]  Gabriëlle H S Buitendijk,et al.  Ophthalmic epidemiology in Europe: the “European Eye Epidemiology” (E3) consortium , 2016, European Journal of Epidemiology.

[46]  Jingyuan Deng,et al.  Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography. , 2010, Journal of proteome research.

[47]  Christine A. Curcio,et al.  Abundant Lipid and Protein Components of Drusen , 2010, PloS one.

[48]  A. D. den Hollander,et al.  Genetic Variants and Systemic Complement Activation Levels Are Associated With Serum Lipoprotein Levels in Age-Related Macular Degeneration. , 2015, Investigative ophthalmology & visual science.

[49]  V. Kakkar,et al.  Friend Turns Foe: Transformation of Anti-Inflammatory HDL to Proinflammatory HDL during Acute-Phase Response , 2010, Cholesterol.

[50]  D. Nyholt A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. , 2004, American journal of human genetics.

[51]  Feng Wen,et al.  New loci and coding variants confer risk for age-related macular degeneration in East Asians , 2015, Nature Communications.

[52]  A. Hofman,et al.  Cholesterol and age-related macular degeneration: is there a link? , 2004, American journal of ophthalmology.

[53]  I. Rodriguez,et al.  Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. , 2006, Molecular vision.

[54]  T. Freddo,et al.  The lipid composition of drusen, Bruch's membrane, and sclera by hot stage polarizing light microscopy. , 2001, Investigative ophthalmology & visual science.

[55]  A Hofman,et al.  Incidence and progression rates of age-related maculopathy: the Rotterdam Study. , 2001, Investigative ophthalmology & visual science.

[56]  M. Pirinen,et al.  Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA , 2016, Nature Communications.

[57]  T. Wong,et al.  ASSOCIATIONS BETWEEN CARDIOVASCULAR RISK FACTORS AND EARLY AGE-RELATED MACULAR DEGENERATION IN A RURAL CHINESE ADULT POPULATION , 2014, Retina.

[58]  S. Russell,et al.  Drusen associated with aging and age‐related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[59]  Y. Teo,et al.  HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization , 2017, International journal of epidemiology.

[60]  E. Eren,et al.  High Density Lipoprotein and it’s Dysfunction , 2012, The open biochemistry journal.

[61]  I. Chowers,et al.  Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. , 2013, Cell metabolism.

[62]  P. Mitchell,et al.  The Incidence and Progression of Age-Related Macular Degeneration over 15 Years: The Blue Mountains Eye Study. , 2015, Ophthalmology.

[63]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.

[64]  Aaron Y. Lee,et al.  Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC) , 2010, Proceedings of the National Academy of Sciences.

[65]  G. Qiu,et al.  CETP Gene may be Associated with Advanced Age-Related Macular Degeneration in the Chinese Population , 2015, Ophthalmic Genetics.

[66]  S. Shinkai,et al.  Risk Factors for Age-Related Macular Degeneration in an Elderly Japanese Population: The Hatoyama Study. , 2015, Investigative ophthalmology & visual science.

[67]  Tom R. Gaunt,et al.  Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. , 2015, Circulation.

[68]  Ivana K. Kim,et al.  Regression of Some High-risk Features of Age-related Macular Degeneration (AMD) in Patients Receiving Intensive Statin Treatment , 2016, EBioMedicine.

[69]  Gabriëlle H S Buitendijk,et al.  Harmonizing the Classification of Age-related Macular Degeneration in the Three-Continent AMD Consortium , 2014, Ophthalmic epidemiology.

[70]  D. Elashoff,et al.  Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis. , 2012, Arthritis and rheumatism.

[71]  Tuija Tammelin,et al.  Metabolic Signatures of Insulin Resistance in 7,098 Young Adults , 2012, Diabetes.

[72]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[73]  C. Curcio,et al.  Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. , 2009, Investigative ophthalmology & visual science.

[74]  M. Parker,et al.  Human Factor H-Related Protein 5 Has Cofactor Activity, Inhibits C3 Convertase Activity, Binds Heparin and C-Reactive Protein, and Associates with Lipoprotein 1 , 2005, The Journal of Immunology.