Apprentissage par Renforcement et Théorie des Jeux pour la coordination de Systèmes Multi-Agents
暂无分享,去创建一个
[1] Michael L. Littman,et al. Friend-or-Foe Q-learning in General-Sum Games , 2001, ICML.
[2] Craig Boutilier,et al. The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems , 1998, AAAI/IAAI.
[3] François Charpillet,et al. Cooperation in stochastic games through communication , 2005, AAMAS '05.
[4] Manuela M. Veloso,et al. Multiagent learning using a variable learning rate , 2002, Artif. Intell..
[5] Keith B. Hall,et al. Correlated Q-Learning , 2003, ICML.
[6] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[7] Roger B. Myerson,et al. Game theory - Analysis of Conflict , 1991 .
[8] Michael P. Wellman,et al. Nash Q-Learning for General-Sum Stochastic Games , 2003, J. Mach. Learn. Res..
[9] A. Cassandra,et al. Exact and approximate algorithms for partially observable markov decision processes , 1998 .
[10] Shlomo Zilberstein,et al. Dynamic Programming for Partially Observable Stochastic Games , 2004, AAAI.
[11] Richard S. Sutton,et al. Dimensions of Reinforcement Learning , 1998 .
[12] Craig Boutilier,et al. Planning, Learning and Coordination in Multiagent Decision Processes , 1996, TARK.
[13] Csaba Szepesvári,et al. A Generalized Reinforcement-Learning Model: Convergence and Applications , 1996, ICML.
[14] Michael P. Wellman,et al. Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm , 1998, ICML.
[15] Michael L. Littman,et al. Markov Games as a Framework for Multi-Agent Reinforcement Learning , 1994, ICML.
[16] Michael L. Littman,et al. Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes , 1997, UAI.