Electrochromic tunable filters based on nanotubes with viologen incorporation

Electrochromic devices offer a wide potential in microoptics applications owing to their compact set-up, low power consumption, and small control voltage. However, the need to use TiO2 nanoparticle layers (NPL) as efficient electrode material still prevents the development of microstructured optical filters like a tunable optical iris. Here we suggest to replace the TiO2 NPL by a nanotube TiO2 electrode obtained by electrochemical anodization of thin microstructured titanium layers. This renders the complete fabrication route of electrochromic filter devices on base of MEMS compatible processes possible. Process control will be addressed as critical issue because extended anodization may cause the delamination of the TiO2 nanotube film. For the chemisorption of electrochromic viologen molecules a temper process is necessary to turn the nanotube film into the anatase phase. Finally, a fully functional disc shaped tunable intensity filter is presented that relies on the viologen functionalized titania nanotube electrode.

[1]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[2]  T. Meen,et al.  Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells , 2013, Nanoscale Research Letters.

[3]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[4]  L. Walder,et al.  High contrast electrochromic iris. , 2015, Optics express.

[5]  P. Schmuki,et al.  Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[6]  D. A. Corrigan,et al.  Proceedings of the symposium on electrochromic materials , 1989 .

[7]  J. Pan,et al.  Electrochromic property of the viologen-anchored mesoporous TiO2 films , 2006 .

[8]  M. Grätzel,et al.  Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes , 1999 .

[9]  C. Ziegler,et al.  Nanocrystalline anatase TiO2 thin films: preparation and crystallite size-dependent properties , 2005 .

[10]  G. Thompson,et al.  A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes , 2009 .

[11]  Egbert Oesterschulze,et al.  Integrated electrochromic iris device for low power and space-limited applications , 2014 .

[12]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[13]  Zach DeVito,et al.  Opt , 2017 .

[14]  Karumbaiah N. Chappanda,et al.  Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate , 2012, Nanoscale Research Letters.

[15]  P. Schmuki,et al.  Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents , 2010 .

[16]  Michael Grätzel,et al.  Nanocrystalline electrochromic displays , 1999 .