The Stabilizing Effects in Gold Carbene Complexes.

Bonding and stabilizing effects in gold carbene complexes are investigated by using Kohn-Sham density functional theory (DFT) and the intrinsic bond orbital (IBO) approach. The π-stabilizing effects of organic substituents at the carbene carbon atom coordinated to the gold atom are evaluated for a series of recently isolated and characterized complexes, as well as intermediates of prototypical 1,6-enyne cyclization reactions. The results indicate that these effects are of particular importance for gold complexes especially because of the low π-backbonding contribution from the gold atom.

[1]  Gerald Knizia,et al.  Elektronenfluss in Reaktionsmechanismen – enthüllt aus quantenmechanischen Grundprinzipien , 2015 .

[2]  Gerald Knizia,et al.  Electron flow in reaction mechanisms--revealed from first principles. , 2015, Angewandte Chemie.

[3]  D. Bourissou,et al.  Enhanced π-backdonation from gold(I): isolation of original carbonyl and carbene complexes. , 2014, Angewandte Chemie.

[4]  A. Macchioni,et al.  When the Tolman electronic parameter fails: a comparative DFT and charge displacement study of [(L)Ni(CO)₃](0/-) and [(L)Au(CO)](0/+). , 2014, Inorganic chemistry.

[5]  F. Rominger,et al.  Isolierung eines nicht‐Heteroatom‐stabilisierten Goldcarbens , 2014 .

[6]  F. Rominger,et al.  Isolation of a non-heteroatom-stabilized gold-carbene complex. , 2014, Angewandte Chemie.

[7]  R. Widenhoefer,et al.  Synthesis, structure, and reactivity of a gold carbenoid complex that lacks heteroatom stabilization. , 2014, Angewandte Chemie.

[8]  A. Macchioni,et al.  The chemical bond in gold(I) complexes with N-heterocyclic Carbenes , 2014 .

[9]  Laurent Batiste,et al.  Coinage-metal mediated ring opening of cis-1,2-dimethoxycyclopropane: trends from the gold, copper, and silver Fischer carbene bond strength. , 2014, Journal of the American Chemical Society.

[10]  A. Fürstner,et al.  Structure of a reactive gold carbenoid. , 2014, Angewandte Chemie.

[11]  R. Widenhoefer,et al.  Experimental evaluation of the electron donor ability of a gold phosphine fragment in a gold carbene complex. , 2014, Chemical communications.

[12]  A. Echavarren,et al.  Intriguing mechanistic labyrinths in gold(i) catalysis , 2013, Chemical communications.

[13]  J. Mattalia,et al.  Gold-catalyzed cycloisomerizations of 1,6-enynes. A computational study , 2014 .

[14]  A. Hashmi,et al.  Catalytic Oxidative Cyclisation Reactions of 1,6‐Enynes: A Critical Comparison Between Gold and Palladium , 2013 .

[15]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[16]  G. Frenking,et al.  End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines. , 2013, Inorganic chemistry.

[17]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[18]  G. Frenking,et al.  Cationic gold carbonyl complex on a phosphine support. , 2011, Inorganic chemistry.

[19]  A. Echavarren,et al.  Complexity via Gold-Catalyzed Molecular Gymnastics , 2010 .

[20]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[21]  A. Fürstner Gold and platinum catalysis--a convenient tool for generating molecular complexity. , 2009, Chemical Society reviews.

[22]  A. Echavarren Gold catalysis: Carbene or cation? , 2009, Nature chemistry.

[23]  W. Goddard,et al.  A bonding model for gold(I) carbene complexes , 2009, Nature chemistry.

[24]  A. Fürstner,et al.  Elementary steps of gold catalysis: NMR spectroscopy reveals the highly cationic character of a "gold carbenoid". , 2009, Angewandte Chemie.

[25]  Le‐Ping Liu,et al.  Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalyzed cyclizations. , 2008, Journal of the American Chemical Society.

[26]  D. Cárdenas,et al.  cis-Selective single-cleavage skeletal rearrangement of 1,6-enynes reveals the multifaceted character of the intermediates in metal-catalyzed cycloisomerizations. , 2008, Angewandte Chemie.

[27]  A. Echavarren,et al.  Gold(I)-catalyzed intermolecular addition of carbon nucleophiles to 1,5- and 1,6-enynes. , 2008, The Journal of organic chemistry.

[28]  A. Hashmi,et al.  “High Noon” in der Gold‐Katalyse: Carben versus Carbokation , 2008 .

[29]  A. Hashmi "High noon" in gold catalysis: carbene versus carbocation intermediates. , 2008, Angewandte Chemie.

[30]  F Dean Toste,et al.  Ligand effects in homogeneous Au catalysis. , 2008, Chemical reviews.

[31]  A. Echavarren,et al.  Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.

[32]  A. Fürstner,et al.  On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. , 2008, Angewandte Chemie.

[33]  N. Shapiro,et al.  Gold(I)-catalyzed oxidative rearrangements. , 2007, Journal of the American Chemical Society.

[34]  Liming Zhang,et al.  Gold and platinum catalysis of enyne cycloisomerization , 2006 .

[35]  V. Pawar Dielectric Relaxation of Propan-1-ol with Chlorobenzene, 1,2-Dichloroethane, and Dimethylene Chloride at (288, 298, 308, and 318) K Using Time-Domain Reflectometry Technique , 2006 .

[36]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[37]  C. Nevado,et al.  Gold(I)-catalyzed cyclizations of 1,6-enynes: alkoxycyclizations and exo/endo skeletal rearrangements. , 2006, Chemistry.

[38]  A. S. K. Hashmi,et al.  Goldrausch in der Katalyse: neue “Claims”† , 2005 .

[39]  A. Hashmi The catalysis gold rush: new claims. , 2005, Angewandte Chemie.

[40]  C. Nevado,et al.  Divergent mechanisms for the skeletal rearrangement and [2+2] cycloaddition of enynes catalyzed by gold. , 2005, Angewandte Chemie.

[41]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[42]  C. Nevado,et al.  Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. , 2004, Angewandte Chemie.

[43]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[44]  A. Hashmi Homogeneous gold catalysts and alkynes: A successful liaison , 2003 .

[45]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[46]  E. Fischer Auf dem Weg zu Carben‐ und Carbin‐Komplexen (Nobel‐Vortrag) , 1974 .