The Stabilizing Effects in Gold Carbene Complexes.
暂无分享,去创建一个
Johannes Kästner | Gerald Knizia | A Stephen K Hashmi | J. Kästner | Johannes E. M. N. Klein | G. Knizia | A. Hashmi | Laura Nunes Dos Santos Comprido | Johannes E M N Klein | Laura Nunes dos Santos Comprido | Laura Nunes dos Santos Comprido | Johannes E. M. N. Klein | A. S. K. Hashmi
[1] Gerald Knizia,et al. Elektronenfluss in Reaktionsmechanismen – enthüllt aus quantenmechanischen Grundprinzipien , 2015 .
[2] Gerald Knizia,et al. Electron flow in reaction mechanisms--revealed from first principles. , 2015, Angewandte Chemie.
[3] D. Bourissou,et al. Enhanced π-backdonation from gold(I): isolation of original carbonyl and carbene complexes. , 2014, Angewandte Chemie.
[4] A. Macchioni,et al. When the Tolman electronic parameter fails: a comparative DFT and charge displacement study of [(L)Ni(CO)₃](0/-) and [(L)Au(CO)](0/+). , 2014, Inorganic chemistry.
[5] F. Rominger,et al. Isolierung eines nicht‐Heteroatom‐stabilisierten Goldcarbens , 2014 .
[6] F. Rominger,et al. Isolation of a non-heteroatom-stabilized gold-carbene complex. , 2014, Angewandte Chemie.
[7] R. Widenhoefer,et al. Synthesis, structure, and reactivity of a gold carbenoid complex that lacks heteroatom stabilization. , 2014, Angewandte Chemie.
[8] A. Macchioni,et al. The chemical bond in gold(I) complexes with N-heterocyclic Carbenes , 2014 .
[9] Laurent Batiste,et al. Coinage-metal mediated ring opening of cis-1,2-dimethoxycyclopropane: trends from the gold, copper, and silver Fischer carbene bond strength. , 2014, Journal of the American Chemical Society.
[10] A. Fürstner,et al. Structure of a reactive gold carbenoid. , 2014, Angewandte Chemie.
[11] R. Widenhoefer,et al. Experimental evaluation of the electron donor ability of a gold phosphine fragment in a gold carbene complex. , 2014, Chemical communications.
[12] A. Echavarren,et al. Intriguing mechanistic labyrinths in gold(i) catalysis , 2013, Chemical communications.
[13] J. Mattalia,et al. Gold-catalyzed cycloisomerizations of 1,6-enynes. A computational study , 2014 .
[14] A. Hashmi,et al. Catalytic Oxidative Cyclisation Reactions of 1,6‐Enynes: A Critical Comparison Between Gold and Palladium , 2013 .
[15] Gerald Knizia,et al. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.
[16] G. Frenking,et al. End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines. , 2013, Inorganic chemistry.
[17] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[18] G. Frenking,et al. Cationic gold carbonyl complex on a phosphine support. , 2011, Inorganic chemistry.
[19] A. Echavarren,et al. Complexity via Gold-Catalyzed Molecular Gymnastics , 2010 .
[20] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[21] A. Fürstner. Gold and platinum catalysis--a convenient tool for generating molecular complexity. , 2009, Chemical Society reviews.
[22] A. Echavarren. Gold catalysis: Carbene or cation? , 2009, Nature chemistry.
[23] W. Goddard,et al. A bonding model for gold(I) carbene complexes , 2009, Nature chemistry.
[24] A. Fürstner,et al. Elementary steps of gold catalysis: NMR spectroscopy reveals the highly cationic character of a "gold carbenoid". , 2009, Angewandte Chemie.
[25] Le‐Ping Liu,et al. Synthesis and structural characterization of stable organogold(I) compounds. Evidence for the mechanism of gold-catalyzed cyclizations. , 2008, Journal of the American Chemical Society.
[26] D. Cárdenas,et al. cis-Selective single-cleavage skeletal rearrangement of 1,6-enynes reveals the multifaceted character of the intermediates in metal-catalyzed cycloisomerizations. , 2008, Angewandte Chemie.
[27] A. Echavarren,et al. Gold(I)-catalyzed intermolecular addition of carbon nucleophiles to 1,5- and 1,6-enynes. , 2008, The Journal of organic chemistry.
[28] A. Hashmi,et al. “High Noon” in der Gold‐Katalyse: Carben versus Carbokation , 2008 .
[29] A. Hashmi. "High noon" in gold catalysis: carbene versus carbocation intermediates. , 2008, Angewandte Chemie.
[30] F Dean Toste,et al. Ligand effects in homogeneous Au catalysis. , 2008, Chemical reviews.
[31] A. Echavarren,et al. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. , 2008, Chemical reviews.
[32] A. Fürstner,et al. On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. , 2008, Angewandte Chemie.
[33] N. Shapiro,et al. Gold(I)-catalyzed oxidative rearrangements. , 2007, Journal of the American Chemical Society.
[34] Liming Zhang,et al. Gold and platinum catalysis of enyne cycloisomerization , 2006 .
[35] V. Pawar. Dielectric Relaxation of Propan-1-ol with Chlorobenzene, 1,2-Dichloroethane, and Dimethylene Chloride at (288, 298, 308, and 318) K Using Time-Domain Reflectometry Technique , 2006 .
[36] F. Weigend. Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.
[37] C. Nevado,et al. Gold(I)-catalyzed cyclizations of 1,6-enynes: alkoxycyclizations and exo/endo skeletal rearrangements. , 2006, Chemistry.
[38] A. S. K. Hashmi,et al. Goldrausch in der Katalyse: neue “Claims”† , 2005 .
[39] A. Hashmi. The catalysis gold rush: new claims. , 2005, Angewandte Chemie.
[40] C. Nevado,et al. Divergent mechanisms for the skeletal rearrangement and [2+2] cycloaddition of enynes catalyzed by gold. , 2005, Angewandte Chemie.
[41] F. Weigend,et al. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.
[42] C. Nevado,et al. Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. , 2004, Angewandte Chemie.
[43] G. Scuseria,et al. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.
[44] A. Hashmi. Homogeneous gold catalysts and alkynes: A successful liaison , 2003 .
[45] A. Klamt,et al. COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .
[46] E. Fischer. Auf dem Weg zu Carben‐ und Carbin‐Komplexen (Nobel‐Vortrag) , 1974 .