Robustness of Paracentrotus lividus larval and post-larval development to pH levels projected for the turn of the century

[1]  S. Dupont,et al.  Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. , 2014, Marine environmental research.

[2]  S. Dupont,et al.  Digestion in sea urchin larvae impaired under ocean acidification , 2013 .

[3]  S. Dupont,et al.  Some like it hot: temperature and acidification modulate larval development and settlement of the sea urchin Arbacia lixula , 2013 .

[4]  S. Dupont,et al.  Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH , 2013, Global change biology.

[5]  H. Pörtner,et al.  Sensitivities of extant animal taxa to ocean acidification , 2013 .

[6]  M. Byrne,et al.  The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  N. Dorey Trans-life cycle impacts of ocean acidification on the green sea urchin Strongylocentrotus droebachiensis , 2013 .

[8]  M. Byrne,et al.  Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollar Arachnoides placenta in response to reduced seawater pH , 2013 .

[9]  S. Dupont,et al.  Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis , 2013 .

[10]  N. Webster,et al.  Ocean acidification reduces induction of coral settlement by crustose coralline algae , 2012, Global change biology.

[11]  F. Tuya,et al.  Echinoderms of the Canary Islands, Spain , 2013 .

[12]  C. A. Hernández,et al.  Global warming and ocean acidification affect fertilization and early development of the sea urchin Paracentrotus lividus , 2013 .

[13]  S. Dupont,et al.  Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification , 2012, Proceedings of the National Academy of Sciences.

[14]  A. Brito,et al.  A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: analysis of potential links with environmental conditions , 2012 .

[15]  O. Hoegh‐Guldberg,et al.  Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. , 2012, Ecology letters.

[16]  Adina Paytan,et al.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison , 2011, PloS one.

[17]  Kit Yu Karen Chan,et al.  Effects of ocean-acidification-induced morphological changes on larval swimming and feeding , 2011, Journal of Experimental Biology.

[18]  S. Dupont,et al.  CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[19]  C. Langdon,et al.  Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides , 2011 .

[20]  S. Dupont,et al.  Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification , 2011, Journal of Experimental Biology.

[21]  P. Dubois,et al.  Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). , 2011, Marine pollution bulletin.

[22]  Ws. Rasband ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA , 2011 .

[23]  M. Byrne,et al.  Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean , 2011, Proceedings of the Royal Society B: Biological Sciences.

[24]  C. Langdon,et al.  Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata , 2010, Proceedings of the National Academy of Sciences.

[25]  D. Vaughn,et al.  The peril of the plankton. , 2010, Integrative and comparative biology.

[26]  S. Dupont,et al.  What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? , 2010 .

[27]  Andrew R. Davis,et al.  Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla , 2010, PloS one.

[28]  S. Dupont,et al.  Impact of near-future ocean acidification on echinoderms , 2010, Ecotoxicology.

[29]  S. Dupont,et al.  Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? , 2009 .

[30]  D. Clark,et al.  Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species , 2009 .

[31]  L. Peck,et al.  Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis , 2008 .

[32]  J. Forester,et al.  Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset , 2008, Proceedings of the National Academy of Sciences.

[33]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[34]  M. Byrne,et al.  Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla , 2008 .

[35]  Benjamin S. Halpern,et al.  Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation , 2007, Proceedings of the National Academy of Sciences.

[36]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[37]  J. Romero,et al.  Differential element assimilation by sea urchins Paracentrotus lividus in seagrass beds: implications for trophic interactions , 2006 .

[38]  E. Sala,et al.  The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins , 2005 .

[39]  M. Verlaque,et al.  Ecology of Paracentrotus lividus , 2001 .

[40]  C. Duarte,et al.  Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling , 1998 .

[41]  M. Jangoux,et al.  From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida) , 1998, Zoomorphology.

[42]  D. Etheridge,et al.  Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn , 1996 .

[43]  M. Jangoux,et al.  Induction of metamorphosis in Paracentrotus lividus larvae (Echinodermata, Echinoidea) , 1996 .

[44]  S. Morgan Life And Death in the Plankton: Larval Mortality and Adaptation , 1995 .

[45]  M. F. Strathmann,et al.  Five tests of food‐limited growth of larvae in coastal waters by comparisons of rates of development and form of echinoplutei , 1994 .

[46]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[47]  R. Hinegardner,et al.  Initiation of metamorphosis in laboratory cultured sea urchins. , 1974, The Biological bulletin.

[48]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[49]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[50]  G. Thorson REPRODUCTIVE and LARVAL ECOLOGY OF MARINE BOTTOM INVERTEBRATES , 1950, Biological reviews of the Cambridge Philosophical Society.