Structural optimum design of bistable cylindrical shell for broadband energy harvesting application

Abstract The shallow cylindrical structure is suitable to develop broadband vibration energy harvesters due to the property of the inherent mechanical bistability. In this letter, the optimum design of the bistable cylindrical shell for broadband energy harvesting application is investigated from the structural point of view. The output power is evaluated by the concept of the harvestable power, which balances the frequency of snap through and the referred output energy associated with each snap through. The non-dimensional harvestable power is analytically expressed as the function of the non-dimensional curvature parameter and one constructed parameter. The universal dependence of the optimal curvature parameter and the associated optimal harvestable power on the constructed parameter is derived, which can be well approximated by the linear relation in double logarithmic coordinate.

[1]  A. F. Arrieta,et al.  Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites , 2013 .

[2]  Qifan He,et al.  Nonlinear Energy Harvesting Under White Noise , 2013 .

[3]  E. Halvorsen Fundamental issues in nonlinear wideband-vibration energy harvesting. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Sondipon Adhikari,et al.  Fokker–Planck equation analysis of randomly excited nonlinear energy harvester , 2014 .

[5]  Mohammed F. Daqaq,et al.  On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations , 2012 .

[6]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[7]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[8]  Brian P. Mann,et al.  Uncertainty in performance for linear and nonlinear energy harvesting strategies , 2012 .

[9]  Yu-Kweng Michael Lin Probabilistic Theory of Structural Dynamics , 1976 .

[10]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[11]  Mohammed F. Daqaq,et al.  Response of duffing-type harvesters to band-limited noise , 2013 .

[12]  Mohammed F. Daqaq,et al.  Energy harvesting in the super-harmonic frequency region of a twin-well oscillator , 2012 .

[13]  H. Saunders,et al.  Random Vibration of Elastic Systems , 1987 .

[14]  Daniel J. Inman,et al.  Optimal configurations of bistable piezo-composites for energy harvesting , 2012 .

[15]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[16]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[17]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[18]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[19]  Mohammed F. Daqaq,et al.  Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters , 2011 .

[20]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[21]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[22]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[23]  Grzegorz Litak,et al.  Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass , 2012 .

[24]  Yu-Kweng Michael Lin,et al.  Probabilistic Structural Dynamics: Advanced Theory and Applications , 1967 .

[25]  G. Litak,et al.  Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation , 2013 .

[26]  Yong Wang,et al.  Random analysis on controlled buckling structure for energy harvesting , 2013 .

[27]  W. C. Lennox,et al.  First-passage time for the snap-through of a shell-type structure , 1971 .