Structural mechanism of mitochondrial membrane remodelling by human OPA1

[1]  L. Scorrano,et al.  Determinants and outcomes of mitochondrial dynamics. , 2023, Molecular cell.

[2]  J. Rudolph,et al.  The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding , 2022, bioRxiv.

[3]  J. Coon,et al.  Structure and functionality of a multimeric human COQ7:COQ9 complex , 2021, bioRxiv.

[4]  T. Horvath,et al.  Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis , 2021, Cell metabolism.

[5]  Carsten Marr,et al.  MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology , 2020, iScience.

[6]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[7]  Z. Rao,et al.  Structural insights into G domain dimerization and pathogenic mutation of OPA1 , 2020, The Journal of cell biology.

[8]  D. Kang,et al.  CHCHD10‐regulated OPA1‐mitofilin complex mediates TDP‐43‐induced mitochondrial phenotypes associated with frontotemporal dementia , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  L. Scorrano,et al.  Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. , 2020, Cell metabolism.

[10]  Jun Ma,et al.  Cryo-EM structures of S-OPA1 reveal its interactions with membrane and changes upon nucleotide binding , 2020, eLife.

[11]  L. Scorrano,et al.  The cell biology of mitochondrial membrane dynamics , 2020, Nature Reviews Molecular Cell Biology.

[12]  Z. Rao,et al.  Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1 , 2020, Proceedings of the National Academy of Sciences.

[13]  Jeremy G. Carlton,et al.  Membrane and organelle dynamics during cell division , 2020, Nature Reviews Molecular Cell Biology.

[14]  D. Chan Mitochondrial Dynamics and Its Involvement in Disease. , 2020, Annual review of pathology.

[15]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[16]  Adam W. Smith,et al.  Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane , 2019, bioRxiv.

[17]  D. Lev,et al.  Metabolic stroke in a patient with bi-allelic OPA1 mutations , 2019, Metabolic Brain Disease.

[18]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[19]  G. Hajnóczky,et al.  Mitochondrial dynamics in adaptive and maladaptive cellular stress responses , 2018, Nature Cell Biology.

[20]  Adam Frost,et al.  Structural Basis of Mitochondrial Receptor Binding and Constriction by DRP1 , 2018, Nature.

[21]  P. De Camilli,et al.  Membrane dynamics and organelle biogenesis—lipid pipelines and vesicular carriers , 2017, BMC Biology.

[22]  A. Engelman,et al.  CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction , 2017, Science Advances.

[23]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[24]  Prashant Mishra,et al.  OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. , 2017, Cell reports.

[25]  K. Mihara,et al.  Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin , 2017, Nature Cell Biology.

[26]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[27]  Roland L. Dunbrack,et al.  The Rosetta all-atom energy function for macromolecular modeling and design , 2017, bioRxiv.

[28]  D. Chan,et al.  Mfn1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion , 2017, Nature.

[29]  Sjors H.W. Scheres,et al.  Helical reconstruction in RELION , 2016, bioRxiv.

[30]  L. Scorrano,et al.  Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control , 2016, Cell reports.

[31]  P. De Camilli,et al.  Membrane fission by dynamin: what we know and what we need to know , 2016, The EMBO journal.

[32]  Sheng Li,et al.  Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex , 2016, Nature.

[33]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[34]  T. Wai,et al.  Mitochondrial Dynamics and Metabolic Regulation , 2016, Trends in Endocrinology & Metabolism.

[35]  P. Bénit,et al.  Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice , 2015, Science.

[36]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[37]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[38]  C. Yip,et al.  Mitochondrial Genome Maintenance 1 (Mgm1) Protein Alters Membrane Topology and Promotes Local Membrane Bending. , 2015, Journal of molecular biology.

[39]  M. Zeviani,et al.  Syndromic parkinsonism and dementia associated with OPA 1 missense mutations , 2015, Annals of neurology.

[40]  Martin Beck,et al.  Xlink Analyzer: Software for analysis and visualization of cross-linking data in the context of three-dimensional structures , 2015, Journal of structural biology.

[41]  Colin W. Combe,et al.  xiNET: Cross-link Network Maps With Residue Resolution , 2015, Molecular & Cellular Proteomics.

[42]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[43]  V. Desquiret-Dumas,et al.  Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. , 2014, Brain : a journal of neurology.

[44]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[45]  Prashant Mishra,et al.  Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. , 2014, Cell metabolism.

[46]  E. Rugarli,et al.  The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission , 2014, The Journal of cell biology.

[47]  M. Beck,et al.  Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold , 2013, Cell.

[48]  Sara Cipolat,et al.  Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency , 2013, Cell.

[49]  Yong J. Kil,et al.  Byonic: Advanced Peptide and Protein Identification Software , 2012, Current protocols in bioinformatics.

[50]  D. Bers,et al.  OPA1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability , 2012, Journal of the American Heart Association.

[51]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[52]  R. Aebersold,et al.  Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography , 2012, Molecular & Cellular Proteomics.

[53]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[54]  S. Schmid,et al.  A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke , 2011, Cell.

[55]  Frank Noé,et al.  Crystal structure of nucleotide-free dynamin , 2011, Nature.

[56]  G. Kochs,et al.  Stalk Domain of the Dynamin-like MxA GTPase Protein Mediates Membrane Binding and Liposome Tubulation via the Unstructured L4 Loop* , 2011, The Journal of Biological Chemistry.

[57]  J. Löwe,et al.  Dynamin architecture--from monomer to polymer. , 2010, Current opinion in structural biology.

[58]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[59]  G. Kochs,et al.  Structural basis of oligomerization in the stalk region of dynamin-like MxA , 2010, Nature.

[60]  J. Heymann,et al.  OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation , 2010, Human molecular genetics.

[61]  D. Turnbull,et al.  Multi-system neurological disease is common in patients with OPA1 mutations , 2010, Brain : a journal of neurology.

[62]  C. Sachse,et al.  Structure of a Bacterial Dynamin-like Protein Lipid Tube Provides a Mechanism For Assembly and Membrane Curving , 2009, Cell.

[63]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[64]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[65]  S. Schmid,et al.  Real‐time detection reveals that effectors couple dynamin's GTP‐dependent conformational changes to the membrane , 2008, The EMBO journal.

[66]  O. Daumke,et al.  Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling , 2007, Nature.

[67]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[68]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[69]  R. D'Hooge,et al.  Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling , 2006, Cell.

[70]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[71]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[72]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[74]  A. M. van der Bliek,et al.  Loss of the Intermembrane Space Protein Mgm1/OPA1 Induces Swelling and Localized Constrictions along the Lengths of Mitochondria* , 2004, Journal of Biological Chemistry.

[75]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[76]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.

[77]  S. Bhattacharya,et al.  OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 , 2000, Nature Genetics.

[78]  B. Lentz,et al.  Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles. , 1997, Biochemistry.

[79]  P Louisot,et al.  Mitochondrial contact sites. Lipid composition and dynamics. , 1990, The Journal of biological chemistry.

[80]  F. Noé,et al.  Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1 , 2019, Nature.

[81]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[82]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.