Forced Oscillations and Routes to Chaos in the Hodgkin-Huxley Axons and Squid Giant Axons

[1]  K. Aihara,et al.  Structures of attractors in periodically forced neural oscillators , 1986 .

[2]  C. T. Genís Entrainment in pacemakers characterized by a V-shaped PRC. , 1986 .

[3]  池上 宜弘 Dynamical systems and nonlinear oscillations , 1986 .

[4]  J Bélair,et al.  Periodic pulsatile stimulation of a nonlinear oscillator , 1986, Journal of mathematical biology.

[5]  Kazuyuki Aihara,et al.  An alternating periodic-chaotic sequence observed in neural oscillators , 1985 .

[6]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[7]  Kunihiko Kaneko,et al.  Supercritical Behavior of Disordered Orbits of a Circle Map , 1984 .

[8]  C. Tresser,et al.  The rotation interval as a computable measure of chaos , 1984 .

[9]  Chaos in the Beeler-Reuter system for the action potential of ventricular myocardial fibres , 1984 .

[10]  K Aihara,et al.  Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. , 1984, Journal of theoretical biology.

[11]  Yoshiki Kuramoto,et al.  Chaos and Statistical Methods , 1984 .

[12]  L Glass,et al.  Global bifurcations of a periodically forced nonlinear oscillator , 1984, Journal of mathematical biology.

[13]  James P. Sethna,et al.  Universal properties of the transition from quasi-periodicity to chaos , 1983 .

[14]  Alvin Shrier,et al.  Chaos in neurobiology , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[16]  K Aihara,et al.  Two stable steady states in the Hodgkin-Huxley axons. , 1983, Biophysical journal.

[17]  Kunihiko Suzuki Nerve Membrane: Biochemistry and Function of Channel Proteins , 1982 .

[18]  K. Aihara,et al.  Temporally coherent organization and instabilities in squid giant axons. , 1982, Journal of theoretical biology.

[19]  Hatsuo Hayashi,et al.  Chaotic behavior in the Onchidium giant neuron under sinusoidal stimulation , 1982 .

[20]  On a Mathematical Neuron Model , 1982 .

[21]  J. Rinzel,et al.  INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. , 1981 .

[22]  I. Tsuda Self-similarity in the Belousov-Zhabotinsky reaction , 1981 .

[23]  John Guckenheimer,et al.  Symbolic dynamics and relaxation oscillations , 1980 .

[24]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[25]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[26]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[27]  F Bezanilla,et al.  Nerve membrane excitation without threshold. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Caianiello Outline of a theory of thought-processes and thinking machines. , 1961, Journal of theoretical biology.

[29]  I. Tasaki,et al.  Demonstration of two stable states of the nerve membrane in potassium‐rich media , 1959, The Journal of physiology.

[30]  A. Huxley ION MOVEMENTS DURING NERVE ACTIVITY , 1959, Annals of the New York Academy of Sciences.

[31]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[32]  H. Schwan,et al.  Biological Engineering , 1970 .