MICROSTRUCTURE AND OPTICAL ABSORPTION PROPERTIES OF SI NANOCRYSTALS FABRICATED WITH LOW-PRESSURE CHEMICAL-VAPOR DEPOSITION

We report a simple technique for fabricating a layer of isolated Si quantum dots on SiO2 glass substrates. This technique uses conventional low‐pressure chemical‐vapor deposition for an extremely short deposition time in the early stage of poly‐Si film growth. The layer after a deposition time of 60 s has isolated Si nanocrystals 5–20 nm in diameter and 2–10 nm in height. The measurements of optical absorption coefficient α show that the absorption edge for Si nanocrystals shifts to higher energies compared to that of bulk Si, indicating a widening of the energy gap caused by quantum size effects. The linear relationship (αhν)1/2 against hν suggests that the Si nanocrystal, whose diameter is as small as 10 nm, basically maintains the properties of an indirect band‐gap semiconductor. Special attention must be paid to the Brownian migration of Si nanocrystals for fabricating Si quantum dots.

[1]  S. Komiya,et al.  New diffractometer for thin‐film structure analysis under grazing incidence condition , 1995 .

[2]  K. Kohno,et al.  Visible Photoluminescence from Si Microcrystals Embedded in SiO2 Glass Films , 1992 .

[3]  Shunichi Muto,et al.  On a Possibility of Wavelength-Domain-Multiplication Memory Using Quantum Boxes , 1995 .

[4]  Isolated Nanometer-Size Si Dot Arrays Fabricated Using Electron-Beam Lithography, Reactive Ion Etching, and Wet Etching in NH4OH/H2O2/H2O , 1994 .

[5]  L. Canham,et al.  Identification of radiative transitions in highly porous silicon , 1993 .

[6]  H. Ono,et al.  Above-band-gap photoluminescence from Si fine particles with oxide shell , 1991 .

[7]  James L. Merz,et al.  Visible luminescence from semiconductor quantum dots in large ensembles , 1995 .

[8]  Structural aspects of light emitting nc-Si prepared by plasma CVD , 1993 .

[9]  A. Nakajima,et al.  Si Quantum Dot Formation with Low-Pressure Chemical Vapor Deposition , 1996 .

[10]  J. Métois,et al.  Épitaxie: Phénomène de postnucléation (sur l'exemple des couches minces discontinues d'aluminium et d'or sur (100) KCl , 1972 .

[11]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[12]  H. Philipp Influence of Oxide Layers on the Determination of the Optical Properties of Silicon , 1972 .

[13]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[14]  Kazuo Yano,et al.  Room-temperature single-electron memory , 1994 .

[15]  R. Nishitani,et al.  Study of the Growth Mechanism of Nanocrystalline Si:H Films Prepared by Reactive Hydrogen Plasma Sputtering of Silicon , 1994 .

[16]  G. W. Cullen,et al.  Early growth of silicon on sapphire. I. Transmission electron microscopy , 1976 .

[17]  Takeda,et al.  Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. , 1992, Physical review. B, Condensed matter.

[18]  Hideki Hashimoto,et al.  Strong blue light emission from an oxygen‐containing Si fine structure , 1993 .

[19]  A. Nakajima,et al.  Photoluminescence of porous Si, oxidized then deoxidized chemically , 1992 .

[20]  Manabu Kato,et al.  Nucleation control of silicon on silicon oxide for low-temperature CVD and silicon selective epitaxy , 1990 .

[21]  D. J. Lockwood,et al.  Optical absorption evidence for quantum confinement effects in porous silicon , 1994 .

[22]  Furukawa,et al.  Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.

[23]  H. Ogawa,et al.  Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .

[24]  Nakajima,et al.  Observation of phonon structures in porous Si luminescence. , 1993, Physical review letters.

[25]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[26]  John M. Zavada,et al.  Light emission from thermally oxidized silicon nanoparticles , 1994 .

[27]  Microstructure of porous silicon , 1993 .

[28]  W. Claassen,et al.  The Nucleation of CVD Silicon on SiO2 and Si3 N 4 Substrates III . The System at Low Temperatures , 1980 .

[29]  Yasuo Nara,et al.  Quantum-Size Effect from Photoluminescence of Low-Temperature-Oxidized Porous Si , 1993 .

[30]  I. Sagnes,et al.  Optical absorption evidence of a quantum size effect in porous silicon , 1993 .