A Bloch decomposition-based stochastic Galerkin method for quantum dynamics with a random external potential
暂无分享,去创建一个
[1] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .
[2] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[3] J. M. Luttinger. The Effect of a Magnetic Field on Electrons in a Periodic Potential , 1951 .
[4] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[5] E. I. Blount. Formalisms of Band Theory , 1962 .
[6] G. V. Chester,et al. Solid State Physics , 2000 .
[7] Bertrand I. Halperin,et al. Green's Functions for a Particle in a One-Dimensional Random Potential , 1965 .
[8] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[9] J. Zak. Dynamics of Electrons in Solids in External Fields , 1968 .
[10] C. Wilcox. Theory of Bloch waves , 1978 .
[11] Werner Kirsch,et al. On the density of states of Schrodinger operators with a random potential , 1982 .
[12] Werner Kirsch,et al. On the spectrum of Schrödinger operators with a random potential , 1982 .
[13] J. Fröhlich,et al. Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .
[14] Johnson,et al. Density-functional theory for random alloys: Total energy within the coherent-potential approximation. , 1986, Physical review letters.
[15] Werner Kirsch,et al. Random Schrödinger operators a course , 1989 .
[16] Fisher,et al. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. , 1991, Physical review. B, Condensed matter.
[17] Fisher,et al. Directed paths in a random potential. , 1991, Physical review. B, Condensed matter.
[18] Yehuda B. Band,et al. Electron states in a magnetic field and random impurity potential : use of the theory of entire functions , 1992 .
[19] P. Markowich,et al. A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .
[20] J. Asch,et al. Motion in periodic potentials , 1997 .
[21] Guillaume Bal,et al. Radiative Transport in a Periodic Structure , 1999 .
[22] Stefan Teufel,et al. Semiclassical Limit for the Schrödinger Equation¶with a Short Scale Periodic Potential , 2000 .
[23] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[24] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[25] Stefan Teufel,et al. Effective Dynamics for Bloch Electrons: Peierls Substitution and Beyond , 2002 .
[26] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[27] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[28] Laurent Gosse,et al. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems , 2004 .
[29] Laurent Gosse,et al. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice II. impurities, confinement and Bloch oscillations , 2004 .
[30] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[31] Peter Muller,et al. A Survey of Rigorous Results on Random Schrödinger Operators for Amorphous Solids , 2005 .
[32] Laurent Gosse,et al. Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrödinger-Poisson , 2006 .
[33] Guillaume Bal,et al. Accuracy of transport models for waves in random media , 2006 .
[34] Shi Jin,et al. A Bloch Decomposition-Based Split-Step Pseudospectral Method for Quantum Dynamics with Periodic Potentials , 2007, SIAM J. Sci. Comput..
[35] Josselin Garnier,et al. Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .
[36] Shi Jin,et al. Numerical Simulation of the Nonlinear Schrödinger Equation with Multidimensional Periodic Potentials , 2008, Multiscale Model. Simul..
[37] Massimo Inguscio,et al. Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.
[38] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[39] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[40] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[41] Guillaume Bal,et al. Asymptotics of the Solutions of the Random Schrödinger Equation , 2011 .
[42] R. Tempone,et al. Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .
[43] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[44] Shi Jin,et al. Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings , 2015, J. Comput. Phys..
[45] Shi Jin,et al. A Stochastic Galerkin Method for Hamilton-Jacobi Equations with Uncertainty , 2015, SIAM J. Sci. Comput..