A Bloch decomposition-based stochastic Galerkin method for quantum dynamics with a random external potential

[1]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[2]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[3]  J. M. Luttinger The Effect of a Magnetic Field on Electrons in a Periodic Potential , 1951 .

[4]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[5]  E. I. Blount Formalisms of Band Theory , 1962 .

[6]  G. V. Chester,et al.  Solid State Physics , 2000 .

[7]  Bertrand I. Halperin,et al.  Green's Functions for a Particle in a One-Dimensional Random Potential , 1965 .

[8]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[9]  J. Zak Dynamics of Electrons in Solids in External Fields , 1968 .

[10]  C. Wilcox Theory of Bloch waves , 1978 .

[11]  Werner Kirsch,et al.  On the density of states of Schrodinger operators with a random potential , 1982 .

[12]  Werner Kirsch,et al.  On the spectrum of Schrödinger operators with a random potential , 1982 .

[13]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[14]  Johnson,et al.  Density-functional theory for random alloys: Total energy within the coherent-potential approximation. , 1986, Physical review letters.

[15]  Werner Kirsch,et al.  Random Schrödinger operators a course , 1989 .

[16]  Fisher,et al.  Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. , 1991, Physical review. B, Condensed matter.

[17]  Fisher,et al.  Directed paths in a random potential. , 1991, Physical review. B, Condensed matter.

[18]  Yehuda B. Band,et al.  Electron states in a magnetic field and random impurity potential : use of the theory of entire functions , 1992 .

[19]  P. Markowich,et al.  A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .

[20]  J. Asch,et al.  Motion in periodic potentials , 1997 .

[21]  Guillaume Bal,et al.  Radiative Transport in a Periodic Structure , 1999 .

[22]  Stefan Teufel,et al.  Semiclassical Limit for the Schrödinger Equation¶with a Short Scale Periodic Potential , 2000 .

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[25]  Stefan Teufel,et al.  Effective Dynamics for Bloch Electrons: Peierls Substitution and Beyond , 2002 .

[26]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[27]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[28]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice: I. homogeneous problems , 2004 .

[29]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice II. impurities, confinement and Bloch oscillations , 2004 .

[30]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[31]  Peter Muller,et al.  A Survey of Rigorous Results on Random Schrödinger Operators for Amorphous Solids , 2005 .

[32]  Laurent Gosse,et al.  Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice - III. From ab initio models to WKB for Schrödinger-Poisson , 2006 .

[33]  Guillaume Bal,et al.  Accuracy of transport models for waves in random media , 2006 .

[34]  Shi Jin,et al.  A Bloch Decomposition-Based Split-Step Pseudospectral Method for Quantum Dynamics with Periodic Potentials , 2007, SIAM J. Sci. Comput..

[35]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[36]  Shi Jin,et al.  Numerical Simulation of the Nonlinear Schrödinger Equation with Multidimensional Periodic Potentials , 2008, Multiscale Model. Simul..

[37]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[38]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[39]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[40]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[41]  Guillaume Bal,et al.  Asymptotics of the Solutions of the Random Schrödinger Equation , 2011 .

[42]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[44]  Shi Jin,et al.  Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings , 2015, J. Comput. Phys..

[45]  Shi Jin,et al.  A Stochastic Galerkin Method for Hamilton-Jacobi Equations with Uncertainty , 2015, SIAM J. Sci. Comput..