On the Dirac–Frenkel Variational Principle on Tensor Banach Spaces

The main goal of this paper is to extend the so-called Dirac–Frenkel variational principle in the framework of tensor Banach spaces. To this end we observe that a tensor product of normed spaces can be described as a union of disjoint connected components. Then we show that each of these connected components, composed by tensors in Tucker format with a fixed rank, is a Banach manifold modelled in a particular Banach space, for which we provide local charts. The description of the local charts of these manifolds is crucial for an algorithmic treatment of high-dimensional partial differential equations and minimisation problems. In order to describe the relationship between these manifolds and the natural ambient space, we prove under natural conditions that each connected component can be immersed in a particular ambient Banach space. This fact allows us to finally extend the Dirac–Frenkel variational principle in the framework of topological tensor spaces.

[1]  C. Bardos,et al.  Setting and Analysis of the Multi-configuration Time-dependent Hartree–Fock Equations , 2009, 0903.3647.

[2]  R. C. James Weakly compact sets , 1964 .

[3]  Tobias Jahnke,et al.  On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.

[4]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[5]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[6]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[7]  H. Wimmer,et al.  Estimates for projections in Banach spaces and existence of direct complements , 2005 .

[8]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[9]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[10]  B. Simon,et al.  Uniform Crossnorms , 2004 .

[11]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[12]  Daniel Beltita,et al.  Smooth homogeneous structures in operator theory , 2005 .

[13]  D. R. Hartree,et al.  The calculation of atomic structures , 1959 .

[14]  Antonio Falcó,et al.  Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces , 2011, Numerische Mathematik.

[15]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[16]  Ivan Oseledets,et al.  A new tensor decomposition , 2009 .

[17]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[18]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[19]  Wataru Takahashi,et al.  Strong Convergence of a Proximal-Type Algorithm in a Banach Space , 2002, SIAM J. Optim..

[20]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[21]  S. Lang Differential and Riemannian Manifolds , 1996 .

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  Antonio Falcó,et al.  On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..

[24]  M. Berger Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis , 2011 .

[25]  F. Verstraete,et al.  Geometry of Matrix Product States: metric, parallel transport and curvature , 2012, 1210.7710.

[26]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[27]  Petr Hájek,et al.  Banach Space Theory , 2011 .

[28]  Dennis F. Cudia The geometry of Banach spaces , 1964 .

[29]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[30]  A. Douady,et al.  Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné , 1966 .

[31]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1989 .

[32]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[33]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[34]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[35]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[36]  Petr Hájek,et al.  Smooth analysis in Banach spaces , 2014 .

[37]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[38]  Saber Trabelsi Analysis of the MultiConfiguration time-dependent Hartree-Fock equations , 2008 .

[39]  Y. Alber,et al.  James orthogonality and orthogonal decompositions of Banach spaces , 2005 .

[40]  Harald Upmeier,et al.  Symmetric Banach Manifolds and Jordan C*-Algebras , 2012 .