Three-Class Association Schemes

We study (symmetric) three-class association schemes. The graphs with four distinct eigenvalues which are one of the relations of such a scheme are characterized. We also give an overview of most known constructions, and obtain necessary conditions for existence. A list of feasible parameter sets on at most 100 vertices is generated.

[1]  R. C. Bose,et al.  Classification and Analysis of Partially Balanced Incomplete Block Designs with Two Associate Classes , 1952 .

[2]  W. S. Connor,et al.  Combinatorial Properties of Group Divisible Incomplete Block Designs , 1952 .

[3]  M. N. Vartak On an Application of Kronecker Product of Matrices to Statistical Designs , 1955 .

[4]  J. Ogawa A necessary condition for existence of regular and symmetrical experimental designs of triangular type, with partially balanced incomplete blocks , 1959 .

[5]  R. C. Bose,et al.  On Linear Associative Algebras Corresponding to Association Schemes of Partially Balanced Designs , 1959 .

[6]  The non-existence of some partially balanced incomplete block designs with latin square type association scheme , 1962 .

[7]  A. Hoffman On the Polynomial of a Graph , 1963 .

[8]  P. John An Extension of the Triangular Association Scheme to Three Associate Classes , 1966 .

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  D. Raghavarao Constructions and Combinatorial Problems in Design of Experiments , 1971 .

[11]  P. Cameron On groups with several doubly-transitive permutation representations , 1972 .

[12]  N. Biggs Algebraic Graph Theory , 1974 .

[13]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[14]  Chester J. Salwach,et al.  Planes and Biplanes , 1977 .

[15]  Henry Beker 2-Designs Having an Intersection Number k - n , 1980, J. Comb. Theory, Ser. A.

[16]  J. J. Seidel,et al.  Tables of two-graphs , 1981 .

[17]  Alexander Schrijver,et al.  Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields , 1981, Comb..

[18]  R.H.F. Denniston Enumeration of Symmetric Designs (25,9,3) , 1982 .

[19]  Henk D. L. Hollmann,et al.  Pseudocyclic 3-class association schemes on 28 points , 1984, Discret. Math..

[20]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[21]  Hanfried Lenz,et al.  Design theory , 1985 .

[22]  A. Robert Calderbank,et al.  On a Pair of Dual Subschemes of the Hamming Scheme Hn(q) , 1985, Eur. J. Comb..

[23]  Chapter 5 - Recursive Constructions of Mutually Orthogonal Latin Squares , 1991 .

[24]  Alexander Rosa,et al.  One-factorizations of the complete graph - A survey , 1985, J. Graph Theory.

[25]  Willem H. Haemers,et al.  A (49, 16, 3, 6) Strongly Regular Graph Does Not Exist , 1989, Eur. J. Comb..

[26]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[27]  W. G. Bridges,et al.  Remarks on 2 - (15, 5, 4) designs , 1990 .

[28]  Sylvia A. Hobart On designs related to coherent configurations of type (224) , 1991, Discret. Math..

[29]  Willem H. Haemers,et al.  Distance regularity and the spectrum of graphs , 1996 .

[30]  Edward Spence,et al.  A complete classification of symmetric (31, 10, 3) designs , 1992, Des. Codes Cryptogr..

[31]  Chris D. Godsil,et al.  Distance regular covers of the complete graph , 1992, J. Comb. Theory, Ser. B.

[32]  Willem H. Haemers,et al.  Graphs cospectral with distance-regular graphs , 1995 .

[33]  Edward Spence Symmetric (41,16,6)‐designs with a nontrivial automorphism of odd order , 1993 .

[34]  Dmitry Fon-Der-Flaass There Exists no Distance-regular Graph with Intersection Array (5, 4, 3; 1, 1, 2) , 1993, Eur. J. Comb..

[35]  Reconstructing a Generalized Quadrangle from its Distance Two Association Scheme , 1993 .

[36]  Finite Geometry and Combinatorics: Coherent configurations derived from quasiregular points in generalized quadrangles , 1993 .

[38]  吉岡 智晃 Strongly Regular Graphs and Partial Geometries , 1993 .

[39]  M. J. Coster,et al.  Quadratic forms in design theory , 1994 .

[40]  Yaotsu Chang Imprimitive symmetric rank 4 association schemes. , 1994 .

[41]  Alexander A. Ivanov,et al.  Investigations in Algebraic Theory of Combinatorial Objects , 1994 .

[42]  Brendan D. McKay,et al.  There are 526,915,620 nonisomorphic one‐factorizations of K12 , 1994 .

[43]  A. V. Ivanov,et al.  Amorphic Cellular Rings , 1994 .

[44]  W. Haemers Interlacing eigenvalues and graphs , 1995 .

[45]  E. R. van Dam,et al.  Regular graphs with four eigenvalues , 1995 .

[46]  D. D. Caen,et al.  A Family of Antipodal Distance-Regular Graphs Related to the Classical Preparata Codes , 1995 .

[47]  Edward Spence,et al.  Regular two-graphs on 36 vertices , 1995 .

[48]  Willem H. Haemers,et al.  A Characterization of Distance-Regular Graphs with Diameter Three , 1997 .

[49]  Willem H. Haemers,et al.  Quasi-symmetric designs related to the triangular graph , 1995, Des. Codes Cryptogr..

[50]  Edward Spence Construction and classification of combinatorial designs , 1995 .

[51]  Rudolf Mathon,et al.  On 2-(45, 12, 3) designs , 1996 .

[52]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[53]  W. Haemers,et al.  Association schemes , 1996 .

[54]  E. V. Dam Graphs with few eigenvalues. An interplay between combinatorics and algebra , 1996 .

[55]  Vladimir D. Tonchev,et al.  Spreads in strongly regular graphs , 1996 .

[56]  Vladimir D. Tonchev,et al.  Spreads in Strongly Regular Graphs , 1996, Des. Codes Cryptogr..

[57]  Miguel Angel Fiol,et al.  From Local Adjacency Polynomials to Locally Pseudo-Distance-Regular Graphs , 1997, J. Comb. Theory, Ser. B.

[58]  Miguel Angel Fiol,et al.  Some Applications of the Proper and Adjacency Polynomials in the Theory of Graph Spectra , 1997, Electron. J. Comb..

[59]  Edward Spence,et al.  Small regular graphs with four eigenvalues , 1998, Discret. Math..