PISA Mathematics in Germany: Extending the Conceptual Framework to Enable a More Differentiated Assessment

Assessing mathematical literacy—as PISA does—claims for comprehensive views of the domain tested. Since mathematics is not a homogenous body of knowledge one needs inner structures of that domain in order to be able to interpret the data gained. There are several possibilities, e.g. to differentiate between the main content strands as geometry, algebra etc. However the German PISA options differentiated according to cognitive activities connected with mathematics. These activities contain the performance of procedures as well as conceptual thinking, in both intra- and extra-mathematical situations. This paper exhibits the basis of that framework, i.e. a model for mathematical tasks, and shows evidences and findings from that approach, as the cognitive balances of several tests, and the striking cognitive profiles we found in different parts of the country.

[1]  Michael Neubrand,et al.  Innere Strukturen mathematischer Leistung im PISA-2000-Test , 2004 .

[2]  S. Krauss,et al.  Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress , 2010 .

[3]  Michael Neubrand,et al.  Naturwissenschaftliche Teilkompetenzen im Ländervergleich , 2003 .

[4]  Petra Stanat,et al.  PISA 2000 : Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich , 2001 .

[5]  Elmar Cohors-Fresenborg,et al.  Grundlagen der Ergänzung des internationalen PISA-Mathematik-Tests in der deutschen Zusatzerhebung , 2001 .

[6]  Werner Blum,et al.  Modelling and Applications in Mathematics Education : the 14th ICMI Study , 2007 .

[7]  Geoff N Masters,et al.  Measuring student knowledge and skills : the PISA 2000 assessment of reading, mathematical and scientific literacy , 2000 .

[8]  Alexander Jordan,et al.  Grundvorstellungen als aufgabenanalytisches und diagnostisches Instrument bei PISA , 2004 .

[9]  Olaf Köller,et al.  Bildungsstandards Mathematik: konkret , 2012 .

[10]  Michael Neubrand,et al.  Kompetenzstufen und Schwierigkeitsmodelle für den PISA-Test zur mathematischen Grundbildung , 2002 .

[11]  Michael Neubrand,et al.  PISA 2000: Ein differenzierter Blick auf die Länder der Bundesrepublik Deutschland. Zusammenfassung zentraler Befunde , 2003 .

[12]  Jeremy Kilpatrick,et al.  Understanding mathematical literacy: The contribution of research , 2001 .

[13]  Alexander Jordan,et al.  Aufgaben im COACTIV-Projekt: Zeugnisse des kognitiven Aktivierungspotentials im deutschen Mathematikunterricht , 2008 .

[14]  Elmar Cohors-Fresenborg,et al.  Komplexität von Denkvorgängen und Formalisierung von Wissen , 2004 .

[15]  Fj Lopez-Real,et al.  Mathematics Education in Different Cultural Traditions-A Comparative Study of East Asia and the West , 2006 .

[16]  J. Stigler,et al.  The Teaching Gap: Best Ideas from the World's Teachers for Improving Education in the Classroom , 1999 .

[17]  Johanna Neubrand The TIMSS 1995 and 1999 Video Studies , 2006 .