Large deviations of semimartingales: A maxingale problem approach i. limits as solutions to a maxingale problem

We establish conditions on the predictable characteristics of semimartingales under which the semimartingales obey a large deviation principle for the Skorohod topology. The associated rate function may depend on the whole past of a trajectory. We use a new technique, which is a counterpart of the martingale problem approach in weak convergence theory. In connection with this, we develop an analogue of stochastic calculus on a space with rate function

[1]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[2]  P. Dupuis,et al.  Large deviations for Markov processes with discontinuous statistics , 1991 .

[3]  Tommy Norberg,et al.  Random capacities and their distributions , 1986 .

[4]  R. Ellis,et al.  LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .

[5]  J. Neveu Bases mathématiques du calcul des probabilités , 1966 .

[6]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[7]  V. Maslov,et al.  Idempotent analysis as a tool of control theory and optimal synthesis. I , 1989 .

[8]  Jean-Pierre Quadrat,et al.  Idempotency: Duality between probability and optimization , 1998 .

[9]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Theory of martingales , 1989 .

[10]  A. Friedman 17 – Stochastic Differential Games , 1976 .

[11]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[12]  Ward Whitt,et al.  Functional large deviation principles for first-passage-time processes , 1997 .

[13]  I. H. Dinwoodie,et al.  Identifying a large deviation rate function , 1993 .

[14]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[15]  P. Dupuis,et al.  Large deviations for Markov processes with discontinuous statistics, II: random walks , 1992 .

[16]  G. O'Brien,et al.  Compactness in the theory of large deviations , 1995 .

[17]  Anatolii A. Puhalskii,et al.  Large deviation analysis of the single server queue , 1996 .

[18]  Vadim Malyshev,et al.  Boundary effects in large deviation problems , 1994 .

[19]  Kiyomasa Narita Large deviation principle for diffusion processes , 1988 .

[20]  S. Varadhan Large Deviations and Applications , 1984 .

[21]  W. Bryc Large Deviations by the Asymptotic Value Method , 1990 .

[22]  Mikami Toshio Some generalizations of wentzell's lower estimates on large deviations , 1988 .

[23]  S. Leonov,et al.  Action functional for diffusion process with discontiuous drift , 1991 .

[24]  A. Acosta Projective Systems in Large Deviation Theory II: Some Applications , 1994 .

[25]  T. Lindvall Weak convergence of probability measures and random functions in the function space D [0,∞) , 1973 .

[26]  Nigel J. Cutland An extension of the Ventcel-Freidlin large deviation principle , 1988 .

[27]  A. A. Pukhal'skii On the Theory of Large Deviations , 1994 .

[28]  Ward Whitt,et al.  Some Useful Functions for Functional Limit Theorems , 1980, Math. Oper. Res..

[29]  Paolo Baldi,et al.  Large deviations for diffusion processes with homogenization and applications , 1991 .

[30]  Exponential Tightness and Projective Systems in Large Deviation Theory , 1997 .

[31]  R. Azencott,et al.  Grandes deviations et applications , 1980 .

[32]  H. Fédérer Geometric Measure Theory , 1969 .

[33]  Bruno Rémillard,et al.  Laws of the iterated logarithm and large deviations for a class of diffusionl processes , 1989 .

[34]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[35]  W. Vervaat Narrow and vague convergence of set functions , 1988 .

[36]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[37]  A. A. Mogul'skii Large Deviations for Trajectories of Multi-Dimensional Random Walks , 1977 .

[38]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[39]  A. A. Mogulskii Large Deviations for Processes with Independent Increments , 1993 .

[40]  J. Lynch,et al.  Large Deviations for Processes with Independent Increments , 1987 .

[41]  C. Dellacherie Capacités et processus stochastiques , 1972 .

[42]  Srinivasa R. S. Varadhan,et al.  Asymptotic probabilities and differential equations , 1966 .

[43]  George L. O'Brien,et al.  Capacities, Large Deviations and Loglog Laws , 1991 .

[44]  G. O'Brien Sequences of capacities, with connections to large-deviation theory , 1996 .

[45]  R. L. Dobrushin,et al.  LARGE DEVIATIONS FOR RANDOM PROCESSES WITH INDEPENDENT INCREMENTS ON INFINITE INTERVALS , 1998 .

[46]  A. Puhalskii,et al.  Large deviations of semimartingales via convergence of the predictable characteristics , 1994 .

[47]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[48]  P. Meyer Probability and potentials , 1966 .

[49]  A. Borovkov Boundary-Value Problems for Random Walks and Large Deviations in Function Spaces , 1967 .

[50]  A. Puhalskii The method of stochastic exponentials for large deviations , 1994 .

[51]  J. Gärtner On Large Deviations from the Invariant Measure , 1977 .

[52]  P. Baldi,et al.  An extension of ventsel-freidlin estimates , 1988 .

[53]  P. Dupuis,et al.  The large deviation principle for a general class of queueing systems. I , 1995 .

[54]  R. L. Dobrushin,et al.  Process Level Large Deviations for a Class of Piecewise Homogeneous Random Walks , 1994 .