Hybrid Semiconductor–Metal Nanoparticles: From Architecture to Function

Hybrid nanoparticles combine two or more disparate materials on the same nanosystem and represent a powerful approach for achieving advanced materials with multiple functionalities stemming from the unusual materials combinations. This review focuses on recent advances in the area of semiconductor–metal hybrid nanoparticles. Synthesis approaches offering high degree of control over the number of components, their compositions, shapes, and interfacial characteristics are discussed, including examples of advanced architectures. Progress in hybrid nanoscale inorganic cage structures prepared by a selective edge growth mechanism of the metal onto the semiconductor nanocrystal is also presented. The combined and often synergistic properties of the hybrid nanoparticles are described with emphasis on optical properties, electronic structure, electrical characteristics, and light induced charge separation effects. Progress toward the application of hybrid nanoparticles in photocatalysis is overviewed. We conclude...

[1]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[2]  Jong-Ho Choi,et al.  Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation , 2002 .

[3]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[4]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[5]  Site-specific photodeposition of silver on ZnO nanorods. , 2004, Angewandte Chemie.

[6]  Uri Banin,et al.  Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. , 2008, Nano letters.

[7]  Paul Mulvaney,et al.  Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters , 2000 .

[8]  Uri Banin,et al.  Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets , 2008 .

[9]  Ququan Wang,et al.  Synthesis of Au–CdS Core–Shell Hetero‐Nanorods with Efficient Exciton–Plasmon Interactions , 2011 .

[10]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[11]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[12]  Xingde Li,et al.  Gold nanocages for cancer detection and treatment. , 2007, Nanomedicine.

[13]  T. Lian,et al.  Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[14]  J. Vela,et al.  Controlled Fabrication of Colloidal Semiconductor-Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition , 2011 .

[15]  Y. M. Tan,et al.  Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods. , 2010, Angewandte Chemie.

[16]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[17]  Nicholas A. Kotov,et al.  Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon−Exciton Interactions, Luminescence Enhancement, and Collective Effects , 2004 .

[18]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[19]  Ququan Wang,et al.  Symmetric and asymmetric Au-AgCdSe hybrid nanorods. , 2012, Nano letters.

[20]  A. F. Tillack,et al.  Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. , 2010, Nano letters.

[21]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[22]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[23]  Younan Xia,et al.  Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation , 2011 .

[24]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[25]  Kyriakos Komvopoulos,et al.  Platinum nanoparticle shape effects on benzene hydrogenation selectivity. , 2007, Nano letters.

[26]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[27]  T. Sen,et al.  Photophysical properties of Au-CdTe hybrid nanostructures of varying sizes and shapes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Andrew Mills,et al.  WATER-PURIFICATION BY SEMICONDUCTOR PHOTOCATALYSIS , 1993 .

[29]  Hendry. I. Elim,et al.  Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. , 2006, Journal of the American Chemical Society.

[30]  M. Willinger,et al.  Galvanic Replacement Reactions in Metal Oxide Nanocrystals , 2013, Science.

[31]  Younan Xia,et al.  A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. , 2010, Nano letters.

[32]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[33]  U. Banin,et al.  Electronic properties of hybrid Cu2S/Ru semiconductor/metallic-cage nanoparticles , 2012, Nanotechnology.

[34]  J. Greener,et al.  Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. , 2009, Nano letters.

[35]  Qing-Hua Xu,et al.  Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. , 2007, Chemical communications.

[36]  Y. Cho,et al.  Synthesis of Au−Cu2S Core−Shell Nanocrystals and Their Photocatalytic and Electrocatalytic Activity , 2010 .

[37]  Ming Lin,et al.  Unusual Selectivity of Metal Deposition on Tapered Semiconductor Nanostructures , 2012 .

[38]  Gustaaf Van Tendeloo,et al.  End‐to‐End Assembly of Shape‐Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains , 2009, Advanced materials.

[39]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[40]  U. Banin,et al.  Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids. , 2012, ACS nano.

[41]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[42]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[43]  Electrical analysis of individual ZnO nanowires , 2008 .

[44]  U. Banin,et al.  Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. , 2011, Angewandte Chemie.

[45]  A. Kornowski,et al.  Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size. , 2007, Small.

[46]  U. Banin,et al.  Cobalt growth on the tips of CdSe nanorods. , 2009, Angewandte Chemie.

[47]  N. Hewa-Kasakarage,et al.  Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes , 2010 .

[48]  M. Maye,et al.  Novel interparticle spatial properties of hydrogen-bonding mediated nanoparticle assembly , 2003 .

[49]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[50]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[51]  Diffusion of gold into InAs nanocrystals. , 2006, Angewandte Chemie.

[52]  Barnett,et al.  Metal-semiconductor nanocontacts: silicon nanowires , 2000, Physical review letters.

[53]  K. Ryan,et al.  Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. , 2007, Nano letters.

[54]  Jordi Arbiol,et al.  Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature , 2011, Science.

[55]  Sergey N. Maximoff,et al.  Chemistry of fast electrons , 2009, Proceedings of the National Academy of Sciences.

[56]  U. Banin,et al.  Synthesis of hybrid CdS-Au colloidal nanostructures. , 2006, The journal of physical chemistry. B.

[57]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[58]  Yadong Li,et al.  Au-ZnO hybrid nanopyramids and their photocatalytic properties. , 2011, Journal of the American Chemical Society.

[59]  Rodolphe Jaffiol,et al.  Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. , 2010, ACS nano.

[60]  M. H. Yeung,et al.  A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. , 2009, Angewandte Chemie.

[61]  Natalia Del Fatti,et al.  Absorption properties of metal-semiconductor hybrid nanoparticles. , 2011, ACS nano.

[62]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[63]  K. Ryan,et al.  Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies , 2008 .

[64]  M. Maye,et al.  An infrared reflectance spectroscopic study of a pH-tunable network of nanoparticles linked by hydrogen bonding , 2000 .

[65]  L. Manna,et al.  Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. , 2010, Nano letters.

[66]  A. Rogach,et al.  Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function , 2011 .

[67]  Stefan Fischbach,et al.  Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation , 2012 .

[68]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[69]  Debraj Ghosh,et al.  Selective placement of faceted metal tips on semiconductor nanorods. , 2013, Angewandte Chemie.

[70]  E. Kumacheva,et al.  Self-assembly of single-tip metal-semiconductor nanorods in selective solvents. , 2011, Angewandte Chemie.

[71]  Albert Libchaber,et al.  Single-molecule measurements of gold-quenched quantum dots. , 2004, Physical review letters.

[72]  Christopher A. Barrett,et al.  Size controlled gold tip growth onto II–VI nanorods , 2010 .

[73]  Xinheng Li,et al.  Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods. , 2011, Journal of the American Chemical Society.

[74]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[75]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[76]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[77]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[78]  R. Baer,et al.  Near-field manipulation of spectroscopic selection rules on the nanoscale , 2012, Proceedings of the National Academy of Sciences.

[79]  Sean E. DeRosa,et al.  Directing the deposition of ferromagnetic cobalt onto Pt-tipped CdSe@CdS nanorods: synthetic and mechanistic insights. , 2012, ACS nano.

[80]  Younan Xia,et al.  Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery , 2010, Expert opinion on drug delivery.

[81]  Younan Xia,et al.  Gold Nanocages for Biomedical Applications , 2007, Advanced materials.

[82]  Molly B. Wilker,et al.  Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals , 2012, Israel journal of chemistry.

[83]  Timothy F. O'Connor,et al.  The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. , 2012, ACS nano.

[84]  Keiko Munechika,et al.  Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. , 2007, Nano letters.

[85]  Peidong Yang,et al.  Selective growth of metal and binary metal tips on CdS nanorods. , 2008, Journal of the American Chemical Society.

[86]  U. Banin,et al.  Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. , 2009, Journal of the American Chemical Society.

[87]  Younan Xia,et al.  Gold nanocages as contrast agents for spectroscopic optical coherence tomography. , 2005, Optics letters.

[88]  L. Novotný,et al.  Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement , 2002 .

[89]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[90]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[91]  Haitao Liu,et al.  Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. , 2006, Nano letters.

[92]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[93]  E. Rabani,et al.  Untitled #2 , 2020, Gender Futurity, Intersectional Autoethnography.

[94]  T. Mokari,et al.  Rational Design of Hybrid Nanostructures for Advanced Photocatalysis , 2013 .

[95]  C. Murray,et al.  Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. , 2010, Angewandte Chemie.

[96]  L. Manna,et al.  Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains. , 2012, ACS nano.

[97]  Yang Zhang,et al.  CdSe–Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components , 2012, Journal of Nanoparticle Research.

[98]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[99]  Uri Banin,et al.  Hybrid nanoscale inorganic cages. , 2010, Nature materials.

[100]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[101]  U. Banin,et al.  Selective Gold Growth on CdSe Seeded CdS Nanorods , 2008 .

[102]  K. Ryan,et al.  Silver Tip Formation on Colloidal CdSe Nanorods by a Facile Phase Transfer Protocol , 2011 .

[103]  Stefan Fischbach,et al.  Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions. , 2012, Small.

[104]  Shouheng Sun,et al.  A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. , 2008, Angewandte Chemie.

[105]  A. Paul Alivisatos,et al.  Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures , 2008 .

[106]  U. Banin,et al.  Structures and Mechanisms in the Growth of Hybrid Ru–Cu2S Nanoparticles: From Cages to Nanonets , 2012 .

[107]  Luigi Carbone,et al.  Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level , 2009, BiOS.

[108]  Peidong Yang,et al.  Polyhedral silver nanocrystals with distinct scattering signatures. , 2006, Angewandte Chemie.

[109]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[110]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[111]  H. Oikawa,et al.  Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures , 2013 .

[112]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[113]  U. Jeng,et al.  Formation of CdSe/CdS/ZnS-Au/SiO2 dual-yolk/shell nanostructures through a Trojan-type inside-out etching strategy , 2012, Nano Research.

[114]  Tianyu Yang,et al.  Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures. , 2009, Physical review letters.

[115]  Seung Hyun Kim,et al.  Hot carrier-driven catalytic reactions on Pt-CdSe-Pt nanodumbbells and Pt/GaN under light irradiation. , 2013, Nano letters.

[116]  J. Jang,et al.  Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation. , 2012, The journal of physical chemistry letters.

[117]  E. Wolf,et al.  Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration , 2003 .

[118]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[119]  U. Banin,et al.  Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. , 2005, Physical review letters.